NoemÃ- Merayo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5558619/publications.pdf Version: 2024-02-01

Νοεμά-Μερλγο

#	Article	IF	CITATIONS
1	Solar light assisted photocatalytic degradation of 1,4-dioxane using high temperature stable anatase W-TiO2 nanocomposites. Catalysis Today, 2021, 380, 199-208.	2.2	20
2	Modification of TiO ₂ with hBN: high temperature anatase phase stabilisation and photocatalytic degradation of 1,4-dioxane. JPhys Materials, 2020, 3, 015009.	1.8	11
3	Modelling the Mineralization of Formaldehyde by Treatment with Nitric Acid. Water (Switzerland), 2020, 12, 1567.	1.2	3
4	Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions, and Market Perspectives. Molecules, 2020, 25, 526.	1.7	86
5	Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: Theory and experiments. Applied Catalysis B: Environmental, 2019, 246, 266-276.	10.8	119
6	In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production. Molecules, 2019, 24, 1800.	1.7	40
7	Green Production of Glycerol Ketals with a Clay-Based Heterogeneous Acid Catalyst. Applied Sciences (Switzerland), 2019, 9, 4488.	1.3	14
8	Learning by doing: Chem-E-Car® motivating experience. Education for Chemical Engineers, 2019, 26, 24-29.	2.8	8
9	A review on greywater reuse: quality, risks, barriers and global scenarios. Reviews in Environmental Science and Biotechnology, 2019, 18, 77-99.	3.9	81
10	Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, 2018, 25, 1339-1351.	2.4	25
11	Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. International Journal of Biological Macromolecules, 2018, 114, 1077-1083.	3.6	38
12	Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 2018, 25, 269-280.	2.4	52
13	Combined effect of sodium carboxymethyl cellulose, cellulose nanofibers and drainage aids in recycled paper production process. Carbohydrate Polymers, 2018, 183, 201-206.	5.1	18
14	Synthesis of NiFe2O4-LDH Composites with High Adsorption and Photocatalytic Activity for Methyl Orange Degradation. Inorganics, 2018, 6, 98.	1.2	18
15	Nanocellulose for Industrial Use. , 2018, , 74-126.		105
16	In situ production of bacterial cellulose to economically improve recycled paper properties. International Journal of Biological Macromolecules, 2018, 118, 1532-1541.	3.6	22
17	Simulation study on comparison of algal treatment to conventional biological processes for greywater treatment. Algal Research, 2018, 35, 106-114.	2.4	17
18	Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Industrial Crops and Products, 2017, 97, 374-387.	2.5	55

NoemÃ-Merayo

#	Article	IF	CITATIONS
19	Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose, 2017, 24, 2987-3000.	2.4	43
20	Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydrate Polymers, 2017, 173, 489-496.	5.1	44
21	Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. International Journal of Biological Macromolecules, 2017, 105, 664-670.	3.6	19
22	Interactions between cellulose nanofibers and retention systems in flocculation of recycled fibers. Cellulose, 2017, 24, 677-692.	2.4	28
23	Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper Properties. BioResources, 2016, 11, .	0.5	31
24	Effect of Bleached Eucalyptus and Pine Cellulose Nanofibers on the Physico-Mechanical Properties of Cartonboard. BioResources, 2016, 11, .	0.5	28
25	Assessing the use of zero-valent iron microspheres to catalyze Fenton treatment processes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69, 54-60.	2.7	12
26	Influence of Alkalinity on the Efficiency and Catalyst Behavior of Photoâ€Assisted Processes. Chemical Engineering and Technology, 2016, 39, 158-165.	0.9	4
27	Application of on-line FTIR methodology to study the mechanisms of heterogeneous advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 185, 344-352.	10.8	23
28	The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review. Environmental Science and Pollution Research, 2015, 22, 168-191.	2.7	129
29	Optimization of the Fenton treatment of 1,4-dioxane and on-line FTIR monitoring of the reaction. Journal of Hazardous Materials, 2014, 268, 102-109.	6.5	28
30	Application of Multi-Barrier Membrane Filtration Technologies to Reclaim Municipal Wastewater for Industrial Use. Separation and Purification Reviews, 2014, 43, 263-310.	2.8	37
31	On-line FTIR as a novel tool to monitor Fenton process behavior. Chemical Engineering Journal, 2013, 232, 519-526.	6.6	9
32	Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry. Journal of Hazardous Materials, 2013, 262, 420-427.	6.5	89
33	Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1350-1363.	0.9	55
34	Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Management, 2012, 32, 1236-1243.	3.7	77
35	The possibility of removal of endocrine disrupters from paper mill waste waters using anaerobic and aerobic biological treatment, membrane bioreactor, ultra-filtration, reverse osmosis and advanced oxidation processes. WIT Transactions on Ecology and the Environment, 2010, , .	0.0	6