Todd M Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5558485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation. Science, 2010, 330, 1551-1557.	6.0	1,054
2	Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature, 2004, 432, 769-775.	13.7	784
3	HIV evolution: CTL escape mutation and reversion after transmission. Nature Medicine, 2004, 10, 282-289.	15.2	769
4	The epigenetic landscape of T cell exhaustion. Science, 2016, 354, 1165-1169.	6.0	694
5	Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature, 2000, 407, 386-390.	13.7	657
6	Differential natural killer cell–mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. Journal of Experimental Medicine, 2007, 204, 3027-3036.	4.2	413
7	Adaptation of HIV-1 to human leukocyte antigen class I. Nature, 2009, 458, 641-645.	13.7	408
8	Efficient Ablation of Genes in Human Hematopoietic Stem and Effector Cells using CRISPR/Cas9. Cell Stem Cell, 2014, 15, 643-652.	5.2	406
9	Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nature Medicine, 1999, 5, 1270-1276.	15.2	364
10	Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nature Medicine, 2002, 8, 493-499.	15.2	350
11	Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naÃ ⁻ ve patients. Hepatology, 2008, 48, 1769-1778.	3.6	326
12	HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature, 2002, 420, 434-439.	13.7	321
13	HIV-1 adaptation to NK-cell-mediated immune pressure. Nature, 2011, 476, 96-100.	13.7	310
14	Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. Aids, 2003, 17, 2581-2591.	1.0	309
15	Selective Escape from CD8 + T-Cell Responses Represents a Major Driving Force of Human Immunodeficiency Virus Type 1 (HIV-1) Sequence Diversity and Reveals Constraints on HIV-1 Evolution. Journal of Virology, 2005, 79, 13239-13249.	1.5	306
16	Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection. PLoS Pathogens, 2012, 8, e1002529.	2.1	306
17	Escape from the Dominant HLA-B27-Restricted Cytotoxic T-Lymphocyte Response in Gag Is Associated with a Dramatic Reduction in Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2007, 81, 12382-12393.	1.5	299
18	CD8 Epitope Escape and Reversion in Acute HCV Infection. Journal of Experimental Medicine, 2004, 200, 1593-1604.	4.2	289

#	Article	IF	CITATIONS
19	Effective Induction of Simian Immunodeficiency Virus-Specific Cytotoxic T Lymphocytes in Macaques by Using a Multiepitope Gene and DNA Prime-Modified Vaccinia Virus Ankara Boost Vaccination Regimen. Journal of Virology, 1999, 73, 7524-7532.	1.5	288
20	Analysis of Gag-specific Cytotoxic T Lymphocytes in Simian Immunodeficiency Virus–infected Rhesus Monkeys by Cell Staining with a Tetrameric Major Histocompatibility Complex Class I–Peptide Complex. Journal of Experimental Medicine, 1998, 187, 1373-1381.	4.2	276
21	High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology, 2004, 127, 924-936.	0.6	276
22	Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. Journal of Clinical Investigation, 2010, 120, 4546-4557.	3.9	276
23	Relative Dominance of Gag p24-Specific Cytotoxic T Lymphocytes Is Associated with Human Immunodeficiency Virus Control. Journal of Virology, 2006, 80, 3122-3125.	1.5	275
24	HLA Alleles Associated with Delayed Progression to AIDS Contribute Strongly to the Initial CD8+ T Cell Response against HIV-1. PLoS Medicine, 2006, 3, e403.	3.9	273
25	Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature, 2010, 465, 350-354.	13.7	269
26	HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphotye Recognition. Journal of Virology, 2009, 83, 2743-2755.	1.5	261
27	Induction of AIDS Virus-Specific CTL Activity in Fresh, Unstimulated Peripheral Blood Lymphocytes from Rhesus Macaques Vaccinated with a DNA Prime/Modified Vaccinia Virus Ankara Boost Regimen. Journal of Immunology, 2000, 164, 4968-4978.	0.4	247
28	Escape and Compensation from Early HLA-B57-Mediated Cytotoxic T-Lymphocyte Pressure on Human Immunodeficiency Virus Type 1 Gag Alter Capsid Interactions with Cyclophilin A. Journal of Virology, 2007, 81, 12608-12618.	1.5	241
29	Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nature Medicine, 2001, 7, 1320-1326.	15.2	231
30	Selection, Transmission, and Reversion of an Antigen-Processing Cytotoxic T-Lymphocyte Escape Mutation in Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2004, 78, 7069-7078.	1.5	227
31	Selection bias at the heterosexual HIV-1 transmission bottleneck. Science, 2014, 345, 1254031.	6.0	225
32	Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nature Immunology, 2006, 7, 173-178.	7.0	209
33	Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. Journal of Clinical Investigation, 2011, 121, 2401-2412.	3.9	209
34	Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. Journal of Experimental Medicine, 2012, 209, 61-75.	4.2	208
35	Antigen Load and Viral Sequence Diversification Determine the Functional Profile of HIV-1–Specific CD8+ T Cells. PLoS Medicine, 2008, 5, e100.	3.9	205
36	TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Nature Immunology, 2012, 13, 691-700.	7.0	203

#	Article	IF	CITATIONS
37	Expression of the Major Histocompatibility Complex Class I Molecule Mamu-A*01 Is Associated with Control of Simian Immunodeficiency Virus SIV mac 239 Replication. Journal of Virology, 2003, 77, 2736-2740.	1.5	195
38	High Level of PD-1 Expression on Hepatitis C Virus (HCV)-Specific CD8 ⁺ and CD4 ⁺ T Cells during Acute HCV Infection, Irrespective of Clinical Outcome. Journal of Virology, 2008, 82, 3154-3160.	1.5	193
39	Broad Repertoire of the CD4+ Th Cell Response in Spontaneously Controlled Hepatitis C Virus Infection Includes Dominant and Highly Promiscuous Epitopes. Journal of Immunology, 2005, 175, 3603-3613.	0.4	186
40	Coordinate linkage of HIV evolution reveals regions of immunological vulnerability. Proceedings of the United States of America, 2011, 108, 11530-11535.	3.3	183
41	Major Histocompatibility Complex Class I Alleles Associated with Slow Simian Immunodeficiency Virus Disease Progression Bind Epitopes Recognized by Dominant Acute-Phase Cytotoxic-T-Lymphocyte Responses. Journal of Virology, 2003, 77, 9029-9040.	1.5	170
42	Vaccine-induced CD8+ T cells control AIDS virus replication. Nature, 2012, 491, 129-133.	13.7	165
43	Marked Epitope- and Allele-Specific Differences in Rates of Mutation in Human Immunodeficiency Type 1 (HIV-1) Gag, Pol, and Nef Cytotoxic T-Lymphocyte Epitopes in Acute/Early HIV-1 Infection. Journal of Virology, 2008, 82, 9216-9227.	1.5	162
44	CD8+ Lymphocytes from Simian Immunodeficiency Virus-Infected Rhesus Macaques Recognize 14 Different Epitopes Bound by the Major Histocompatibility Complex Class I Molecule Mamu-A*01: Implications for Vaccine Design and Testing. Journal of Virology, 2001, 75, 738-749.	1.5	143
45	Definition of the viral targets of protective HIV-1-specific T cell responses. Journal of Translational Medicine, 2011, 9, 208.	1.8	143
46	Cutting Edge: Prolonged Exposure to HIV Reinforces a Poised Epigenetic Program for PD-1 Expression in Virus-Specific CD8 T Cells. Journal of Immunology, 2013, 191, 540-544.	0.4	143
47	Rapid Reversion of Sequence Polymorphisms Dominates Early Human Immunodeficiency Virus Type 1 Evolution. Journal of Virology, 2007, 81, 193-201.	1.5	142
48	Structural and Functional Constraints Limit Options for Cytotoxic T-Lymphocyte Escape in the Immunodominant HLA-B27-Restricted Epitope in Human Immunodeficiency Virus Type 1 Capsid. Journal of Virology, 2008, 82, 5594-5605.	1.5	138
49	Enhanced Detection of Human Immunodeficiency Virus Type 1-Specific T-Cell Responses to Highly Variable Regions by Using Peptides Based on Autologous Virus Sequences. Journal of Virology, 2003, 77, 7330-7340.	1.5	133
50	Persistent Recognition of Autologous Virus by High-Avidity CD8 T Cells in Chronic, Progressive Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2004, 78, 630-641.	1.5	130
51	Spontaneous Control of HCV Is Associated With Expression of HLA-B*57 and Preservation of Targeted Epitopes. Gastroenterology, 2011, 140, 686-696.e1.	0.6	130
52	A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. ELife, 2013, 2, e01123.	2.8	126
53	Physical mapping of the split hand/split foot locus on chromosome 7 and implication in syndromic ectrodactyly. Human Molecular Genetics, 1994, 3, 1345-1354.	1.4	125
54	Dominance of CD8 Responses Specific for Epitopes Bound by a Single Major Histocompatibility Complex Class I Molecule during the Acute Phase of Viral Infection. Journal of Virology, 2002, 76, 875-884.	1.5	125

#	Article	IF	CITATIONS
55	HIV-1–specific cytotoxicity is preferentially mediated by a subset of CD8+ T cells producing both interferon-γ and tumor necrosis factor–α. Blood, 2004, 104, 487-494.	0.6	124
56	Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nature Immunology, 2021, 22, 1020-1029.	7.0	124
57	De Novo Generation of Escape Variant-Specific CD8 + T-Cell Responses following Cytotoxic T-Lymphocyte Escape in Chronic Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2005, 79, 12952-12960.	1.5	122
58	Genetic Characterization of Human Immunodeficiency Virus Type 1 in Elite Controllers: Lack of Gross Genetic Defects or Common Amino Acid Changes. Journal of Virology, 2008, 82, 8422-8430.	1.5	114
59	HLA-Associated Alterations in Replication Capacity of Chimeric NL4-3 Viruses Carrying <i>gag-protease</i> from Elite Controllers of Human Immunodeficiency Virus Type 1. Journal of Virology, 2009, 83, 140-149.	1.5	112
60	Early Selection in Gag by Protective HLA Alleles Contributes to Reduced HIV-1 Replication Capacity That May Be Largely Compensated for in Chronic Infection. Journal of Virology, 2010, 84, 11937-11949.	1.5	111
61	Tat-Vaccinated Macaques Do Not Control Simian Immunodeficiency Virus SIVmac239 Replication. Journal of Virology, 2002, 76, 4108-4112.	1.5	110
62	HIV-1 Viral Escape in Infancy Followed by Emergence of a Variant-Specific CTL Response. Journal of Immunology, 2005, 174, 7524-7530.	0.4	109
63	Selective Depletion of High-Avidity Human Immunodeficiency Virus Type 1 (HIV-1)-Specific CD8 + T Cells after Early HIV-1 Infection. Journal of Virology, 2007, 81, 4199-4214.	1.5	109
64	Virological and immunological determinants of intrahepatic virus-specific CD8+ T-cell failure in chronic hepatitis C virus infection. Hepatology, 2008, 47, 1824-1836.	3.6	108
65	Highly Sensitive and Specific Detection of Rare Variants in Mixed Viral Populations from Massively Parallel Sequence Data. PLoS Computational Biology, 2012, 8, e1002417.	1.5	107
66	Immune-driven recombination and loss of control after HIV superinfection. Journal of Experimental Medicine, 2008, 205, 1789-1796.	4.2	106
67	Protective HLA Class I Alleles That Restrict Acute-Phase CD8 ⁺ T-Cell Responses Are Associated with Viral Escape Mutations Located in Highly Conserved Regions of Human Immunodeficiency Virus Type 1. Journal of Virology, 2009, 83, 1845-1855.	1.5	106
68	Structural topology defines protective CD8 ⁺ T cell epitopes in the HIV proteome. Science, 2019, 364, 480-484.	6.0	105
69	Full-Breadth Analysis of CD8 + T-Cell Responses in Acute Hepatitis C Virus Infection and Early Therapy. Journal of Virology, 2005, 79, 12979-12988.	1.5	102
70	Rapid Evolution of HIV-1 to Functional CD8 ⁺ T Cell Responses in Humanized BLT Mice. Science Translational Medicine, 2012, 4, 143ra98.	5.8	101
71	HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet, The, 2004, 363, 863-866.	6.3	100
72	BLT-humanized C57BL/6 Rag2â^'/â^'γcâ^'/â^'CD47â^'/â^' mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood, 2013, 122, 4013-4020.	0.6	100

#	Article	IF	CITATIONS
73	HIV-1 Nef is preferentially recognized by CD8 T cells in primary HIV-1 infection despite a relatively high degree of genetic diversity. Aids, 2004, 18, 1383-1392.	1.0	99
74	Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus. PLoS Pathogens, 2016, 12, e1005619.	2.1	97
75	BLT humanized mice as a small animal model of HIV infection. Current Opinion in Virology, 2015, 13, 75-80.	2.6	96
76	Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nature Biotechnology, 2019, 37, 160-168.	9.4	96
77	A viral CTL escape mutation leading to immunoglobulin-like transcript 4–mediated functional inhibition of myelomonocytic cells. Journal of Experimental Medicine, 2007, 204, 2813-2824.	4.2	95
78	Viral Sequence Evolution in Acute Hepatitis C Virus Infection. Journal of Virology, 2007, 81, 11658-11668.	1.5	93
79	Comparison of Vaccine Strategies Using Recombinant env–gag–pol MVA with or without an Oligomeric Env Protein Boost in the SHIV Rhesus Macaque Model. Virology, 2002, 294, 270-281.	1.1	90
80	Human leukocyte antigen-associated sequence polymorphisms in hepatitis C virus reveal reproducible immune responses and constraints on viral evolution. Hepatology, 2007, 46, 339-349.	3.6	90
81	Impact of pre-adapted HIV transmission. Nature Medicine, 2016, 22, 606-613.	15.2	87
82	Hitting HIV where it hurts: an alternative approach to HIV vaccine design. Trends in Immunology, 2006, 27, 504-510.	2.9	86
83	Immunological and Virological Impact of Highly Active Antiretroviral Therapy Initiated during Acute HIVâ€I Infection. Journal of Infectious Diseases, 2006, 194, 734-739.	1.9	86
84	PD-1 Blockade in Chronically HIV-1-Infected Humanized Mice Suppresses Viral Loads. PLoS ONE, 2013, 8, e77780.	1.1	85
85	Functional Impairment of Simian Immunodeficiency Virus-Specific CD8+ T Cells during the Chronic Phase of Infection. Journal of Virology, 2001, 75, 2458-2461.	1.5	84
86	Hepatitis C Virus Reinfection and Spontaneous Clearance of Reinfection—the InC ³ Study. Journal of Infectious Diseases, 2015, 212, 1407-1419.	1.9	82
87	Impaired Hepatitis C Virus-Specific T Cell Responses and Recurrent Hepatitis C Virus in HIV Coinfection. PLoS Medicine, 2006, 3, e492.	3.9	81
88	Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus. Journal of Experimental Medicine, 2006, 203, 529-539.	4.2	81
89	Differential Neutralization of Human Immunodeficiency Virus (HIV) Replication in Autologous CD4 T Cells by HIV-Specific Cytotoxic T Lymphocytes. Journal of Virology, 2009, 83, 3138-3149.	1.5	80
90	Viral Evolution and Escape during Acute HIVâ€I Infection. Journal of Infectious Diseases, 2010, 202, S309-S314.	1.9	79

#	Article	IF	CITATIONS
91	Escape in One of Two Cytotoxic T-Lymphocyte Epitopes Bound by a High-Frequency Major Histocompatibility Complex Class I Molecule, Mamu-A*02: a Paradigm for Virus Evolution and Persistence?. Journal of Virology, 2002, 76, 11623-11636.	1.5	77
92	Hepatitis C Virus (HCV) Sequence Variation Induces an HCV-Specific T-Cell Phenotype Analogous to Spontaneous Resolution. Journal of Virology, 2010, 84, 1656-1663.	1.5	76
93	Mutually Exclusive T-Cell Receptor Induction and Differential Susceptibility to Human Immunodeficiency Virus Type 1 Mutational Escape Associated with a Two-Amino-Acid Difference between HLA Class I Subtypes. Journal of Virology, 2007, 81, 1619-1631.	1.5	75
94	Complete viral RNA genome sequencing of ultra-low copy samples by sequence-independent amplification. Nucleic Acids Research, 2013, 41, e13-e13.	6.5	75
95	Definition of Five New Simian Immunodeficiency Virus Cytotoxic T-Lymphocyte Epitopes and Their Restricting Major Histocompatibility Complex Class I Molecules: Evidence for an Influence on Disease Progression. Journal of Virology, 2000, 74, 7400-7410.	1.5	72
96	Use of a novel GFP reporter cell line to examine replication capacity of CXCR4- and CCR5-tropic HIV-1 by flow cytometry. Journal of Virological Methods, 2006, 131, 134-142.	1.0	70
97	HLA-B63 Presents HLA-B57/B58-Restricted Cytotoxic T-Lymphocyte Epitopes and Is Associated with Low Human Immunodeficiency Virus Load. Journal of Virology, 2005, 79, 10218-10225.	1.5	68
98	Impairment of Gag-Specific CD8 + T-Cell Function in Mucosal and Systemic Compartments of Simian Immunodeficiency Virus mac251- and Simian-Human Immunodeficiency Virus KU2-Infected Macaques. Journal of Virology, 2001, 75, 11483-11495.	1.5	67
99	Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nature Medicine, 2020, 26, 1776-1787.	15.2	63
100	Differentiation of exhausted CD8+ T cells after termination of chronic antigen stimulation stops short of achieving functional T cell memory. Nature Immunology, 2021, 22, 1030-1041.	7.0	63
101	Hepatitis C Virus Immune Escape via Exploitation of a Hole in the T Cell Repertoire. Journal of Immunology, 2008, 181, 6435-6446.	0.4	61
102	Antigen recognition-triggered drug delivery mediated by nanocapsule-functionalized cytotoxic T-cells. Biomaterials, 2017, 117, 44-53.	5.7	61
103	Reduced Replication Capacity of NL4-3 Recombinant Viruses Encoding Reverse Transcriptase–Integrase Sequences From HIV-1 Elite Controllers. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, 100-108.	0.9	59
104	Antiviral CD8+ T Cells Restricted by Human Leukocyte Antigen Class II Exist during Natural HIV Infection and Exhibit Clonal Expansion. Immunity, 2016, 45, 917-930.	6.6	59
105	Transmission and Long-Term Stability of Compensated CD8 Escape Mutations. Journal of Virology, 2009, 83, 3993-3997.	1.5	58
106	Differential regulation of toll-like receptor pathways in acute and chronic HIV-1 infection. Aids, 2012, 26, 533-541.	1.0	58
107	Induction of Mucosal Homing Virus-Specific CD8+ T Lymphocytes by Attenuated Simian Immunodeficiency Virus. Journal of Virology, 2000, 74, 8762-8766.	1.5	57
108	Increased Cytotoxic T-Lymphocyte Epitope Variant Cross-Recognition and Functional Avidity Are Associated with Hepatitis C Virus Clearance. Journal of Virology, 2008, 82, 3147-3153.	1.5	55

#	Article	IF	CITATIONS
109	Tumor Necrosis Factor α Is Associated With Viral Control and Early Disease Progression in Patients With HIV Type 1 Infection. Journal of Infectious Diseases, 2014, 210, 1042-1046.	1.9	54
110	Effects of Cytotoxic T Lymphocytes (CTL) Directed against a Single Simian Immunodeficiency Virus (SIV) Gag CTL Epitope on the Course of SIVmac239 Infection. Journal of Virology, 2002, 76, 10507-10511.	1.5	52
111	HIV-1 superinfection. Journal of Allergy and Clinical Immunology, 2003, 112, 829-835.	1.5	52
112	Fluctuations of functionally distinct CD8+ T-cell clonotypes demonstrate flexibility of the HIV-specific TCR repertoire. Blood, 2006, 107, 2373-2383.	0.6	51
113	Early Transcriptional Divergence Marks Virus-Specific Primary Human CD8+ T Cells in Chronic versus Acute Infection. Immunity, 2017, 47, 648-663.e8.	6.6	50
114	Protective effect of human leukocyte antigen B27 in hepatitis C virus infection requires the presence of a genotype-specific immunodominant CD8+ T-cell epitope. Hepatology, 2010, 51, 54-62.	3.6	48
115	Human leukocyte antigen B27 selects for rare escape mutations that significantly impair hepatitis C virus replication and require compensatory mutations. Hepatology, 2011, 54, 1157-1166.	3.6	47
116	Generation of a Transcription Map at the HSD17B Locus Centromeric to BRCA1 at 17q21. Genomics, 1995, 28, 530-542.	1.3	44
117	Contribution of Immunological and Virological Factors to Extremely Severe Primary HIV Type 1 Infection. Clinical Infectious Diseases, 2009, 48, 229-238.	2.9	44
118	Frequent and Variable Cytotoxic-T-Lymphocyte Escape-Associated Fitness Costs in the Human Immunodeficiency Virus Type 1 Subtype B Gag Proteins. Journal of Virology, 2013, 87, 3952-3965.	1.5	43
119	Understanding cytotoxic T-lymphocyte escape during simian immunodeficiency virus infection. Immunological Reviews, 2001, 183, 115-126.	2.8	41
120	Limited Sequence Evolution within Persistently Targeted CD8 Epitopes in Chronic Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2005, 79, 8171-8181.	1.5	41
121	HLA Footprints on Human Immunodeficiency Virus Type 1 Are Associated with Interclade Polymorphisms and Intraclade Phylogenetic Clustering. Journal of Virology, 2009, 83, 4605-4615.	1.5	40
122	The Majority of Currently Circulating Human Immunodeficiency Virus Type 1 Clade B Viruses Fail To Prime Cytotoxic T-Lymphocyte Responses against an Otherwise Immunodominant HLA-A2-Restricted Epitope: Implications for Vaccine Design. Journal of Virology, 2005, 79, 5000-5005.	1.5	39
123	Protective Efficacy of Broadly Neutralizing Antibodies with Incomplete Neutralization Activity against Simian-Human Immunodeficiency Virus in Rhesus Monkeys. Journal of Virology, 2017, 91, .	1.5	38
124	Crippling HIV one mutation at a time. Journal of Experimental Medicine, 2008, 205, 1003-1007.	4.2	37
125	Maternal Transmission of Human Immunodeficiency Virus Escape Mutations Subverts HLA-B57 Immunodominance but Facilitates Viral Control in the Haploidentical Infant. Journal of Virology, 2009, 83, 8616-8627.	1.5	37
126	Frequent and Strong Antibody-Mediated Natural Killer Cell Activation in Response to HIV-1 Env in Individuals with Chronic HIV-1 Infection. Journal of Virology, 2012, 86, 6986-6993.	1.5	37

#	Article	IF	CITATIONS
127	Whole Genome Pyrosequencing of Rare Hepatitis C Virus Genotypes Enhances Subtype Classification and Identification of Naturally Occurring Drug Resistance Variants. Journal of Infectious Diseases, 2013, 208, 17-31.	1.9	37
128	A high incidence of Shigella -induced arthritis in a primate species: major histocompatibility complex class I molecules associated with resistance and susceptiblity, and their relationship to HLA-B27. Immunogenetics, 2000, 51, 314-325.	1.2	36
129	Increased frequency and function of KIR2DL1–3 ⁺ NKÂcells in primary HIVâ€1 infection are determined by <i>HLAâ€C</i> group haplotypes. European Journal of Immunology, 2014, 44, 2938-2948.	1.6	36
130	Protection of Humanized Mice From Repeated Intravaginal HIV Challenge by Passive Immunization: A Model for Studying the Efficacy of Neutralizing Antibodies In Vivo. Journal of Infectious Diseases, 2016, 214, 612-616.	1.9	33
131	Gorillas with Spondyloarthropathies Express an MHC Class I Molecule with Only Limited Sequence Similarity to HLA-B27 that Binds Peptides with Arginine at P2. Journal of Immunology, 2001, 166, 3334-3344.	0.4	32
132	Fine Specificity and Cross-Clade Reactivity of HIV Type 1 Gag-Specific CD4+T Cells. AIDS Research and Human Retroviruses, 2004, 20, 315-325.	0.5	32
133	Increased Sequence Diversity Coverage Improves Detection of HIV-Specific T Cell Responses. Journal of Immunology, 2007, 179, 6638-6650.	0.4	32
134	Immunologic evidence for lack of heterologous protection following resolution of HCV in patients with non–genotype 1 infection. Blood, 2007, 110, 1559-1569.	0.6	32
135	DNA immunization in combination with effective antiretroviral drug therapy controls viral rebound and prevents simian AIDS after treatment is discontinued. Virology, 2006, 348, 200-215.	1.1	31
136	Compensatory Mutations Restore the Replication Defects Caused by Cytotoxic T Lymphocyte Escape Mutations in Hepatitis C Virus Polymerase. Journal of Virology, 2011, 85, 11883-11890.	1.5	30
137	Vaccine-Induced Simian Immunodeficiency Virus-Specific CD8 ⁺ T-Cell Responses Focused on a Single Nef Epitope Select for Escape Variants Shortly after Infection. Journal of Virology, 2015, 89, 10802-10820.	1.5	30
138	Effect of scavenger receptor class B type I antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation. Liver Transplantation, 2016, 22, 287-297.	1.3	30
139	Increased detection of HIV-specific T cell responses by combination of central sequences with comparable immunogenicity. Aids, 2008, 22, 447-456.	1.0	29
140	How a Single Patient Influenced HIV Research — 15-Year Follow-up. New England Journal of Medicine, 2014, 370, 682-683.	13.9	29
141	Enhanced immune activation linked to endotoxemia in HIV-1 seronegative MSM. Aids, 2014, 28, 2162-2166.	1.0	28
142	High resolution sequencing of hepatitis C virus reveals limited intra-hepatic compartmentalization in end-stage liver disease. Journal of Hepatology, 2017, 66, 28-38.	1.8	28
143	Characterization of full-length hepatitis C virus genotype 4 sequences. Journal of Viral Hepatitis, 2007, 14, 330-337.	1.0	27
144	Temporal Dynamics of a Predominant Protease Inhibitor–Resistance Mutation in a Treatment-Naive, Hepatitis C Virus–Infected Individual. Journal of Infectious Diseases, 2009, 199, 737-741.	1.9	24

#	Article	IF	CITATIONS
145	HLA-Bâ^—27 subtype specificity determines targeting and viral evolution of a hepatitis C virus-specific CD8+ T cell epitope. Journal of Hepatology, 2014, 60, 22-29.	1.8	24
146	Trace amounts of sporadically reappearing HCV RNA can cause infection. Journal of Clinical Investigation, 2014, 124, 3469-3478.	3.9	23
147	STI and beyond: the prospects of boosting anti-HIV immune responses. Trends in Immunology, 2002, 23, 456-460.	2.9	22
148	Deep sequencing of hepatitis C virus reveals genetic compartmentalization in cerebrospinal fluid from cognitively impaired patients. Liver International, 2016, 36, 1418-1424.	1.9	22
149	HIV-1 Balances the Fitness Costs and Benefits of Disrupting the Host Cell Actin Cytoskeleton Early after Mucosal Transmission. Cell Host and Microbe, 2019, 25, 73-86.e5.	5.1	22
150	The Simian Immunodeficiency Virus Envelope Glycoprotein Contains Two Epitopes Presented by the Mamu-A*01 Class I Molecule. Journal of Virology, 1999, 73, 8035-8039.	1.5	22
151	Escape from a Dominant HLA-B*15-Restricted CD8 ⁺ T Cell Response against Hepatitis C Virus Requires Compensatory Mutations outside the Epitope. Journal of Virology, 2012, 86, 991-1000.	1.5	21
152	HIV-Specific CD8+ T-Cell Immunity in Humanized Bone Marrow–Liver–Thymus Mice. Journal of Infectious Diseases, 2013, 208, S150-S154.	1.9	20
153	Functional impairment of HIV-specific CD8+ TÂcells precedes aborted spontaneous control of viremia. Immunity, 2021, 54, 2372-2384.e7.	6.6	20
154	Increased Breadth and Depth of Cytotoxic T Lymphocytes Responses against HIV-1-B Nef by Inclusion of Epitope Variant Sequences. PLoS ONE, 2011, 6, e17969.	1.1	20
155	Immunization of BLT Humanized Mice Redirects T Cell Responses to Gag and Reduces Acute HIV-1 Viremia. Journal of Virology, 2019, 93, .	1.5	19
156	HIV Antibody Fc N-Linked Glycosylation Is Associated with Viral Rebound. Cell Reports, 2020, 33, 108502.	2.9	19
157	Cytotoxic T-Lymphocyte Escape Monitoring in Simian Immunodeficiency Virus Vaccine Challenge Studies. DNA and Cell Biology, 2002, 21, 659-664.	0.9	18
158	Analysis of the TCR β Variable Gene Repertoire in Chimpanzees: Identification of Functional Homologs to Human Pseudogenes. Journal of Immunology, 2003, 170, 4161-4169.	0.4	18
159	Immunogenicity of hybrid DNA vaccines expressing hepatitis B core particles carrying human and simian immunodeficiency virus epitopes in mice and rhesus macaques. Virology, 2007, 364, 245-255.	1.1	18
160	Design, Expression, and Processing of Epitomized Hepatitis C Virus-Encoded CTL Epitopes. Journal of Immunology, 2008, 181, 6361-6370.	0.4	17
161	Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8 ⁺ T Cell Response by Selection of Altered Epitope Processing. Journal of Virology, 2016, 90, 33-42.	1.5	16
162	Innate immune reconstitution with suppression of HIV-1. JCI Insight, 2016, 1, e85433.	2.3	16

#	Article	IF	CITATIONS
163	PriSM: a primer selection and matching tool for amplification and sequencing of viral genomes. Bioinformatics, 2011, 27, 266-267.	1.8	15
164	Recent Advances in Humanized Mice: Accelerating the Development of an HIV Vaccine. Journal of Infectious Diseases, 2013, 208, S121-S124.	1.9	15
165	Early immune adaptation in HIV-1 revealed by population-level approaches. Retrovirology, 2014, 11, 64.	0.9	15
166	Naturally Occurring Subclinical Endotoxemia in Humans Alters Adaptive and Innate Immune Functions through Reduced MAPK and Increased STAT1 Phosphorylation. Journal of Immunology, 2016, 196, 668-677.	0.4	15
167	Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque. AIDS Research and Human Retroviruses, 2017, 33, 843-858.	0.5	15
168	Differences in the Expressed HLA Class I Alleles Effect the Differential Clustering of HIV Type 1-Specific T Cell Responses in Infected Chinese and Caucasians. AIDS Research and Human Retroviruses, 2004, 20, 557-564.	0.5	14
169	The T-cell receptor β chain-encoding gene repertoire of a New World primate species, the cotton-top tamarin. Immunogenetics, 1996, 45, 151-160.	1.2	13
170	Vaccination with CTL epitopes that escape: an alternative approach to HIV vaccine development?. Immunology Letters, 2001, 79, 77-84.	1.1	13
171	Early type I Interferon response induces upregulation of human β-defensin 1 during acute HIV-1 infection. PLoS ONE, 2017, 12, e0173161.	1.1	13
172	Rapid HIV disease progression following superinfection in an HLA-B*27:05/B*57:01-positive transmission recipient. Retrovirology, 2018, 15, 7.	0.9	13
173	A Novel Immunodominant CD8+ T Cell Response Restricted by a Common HLA-C Allele Targets a Conserved Region of Gag HIV-1 Clade CRF01_AE Infected Thais. PLoS ONE, 2011, 6, e23603.	1.1	13
174	Loss of HIV-1-specific T-cell responses associated with very rapid HIV-1 disease progression. Aids, 2007, 21, 889-891.	1.0	12
175	Ceestatin, a Novel Small Molecule Inhibitor of Hepatitis C Virus Replication, Inhibits 3-Hydroxy-3-Methylglutaryl-Coenzyme A Synthase. Journal of Infectious Diseases, 2011, 204, 609-616.	1.9	12
176	Temporal effect of HLA-B*57 on viral control during primary HIV-1 infection. Retrovirology, 2013, 10, 139.	0.9	11
177	Disease progression despite protective HLA expression in an HIV-infected transmission pair. Retrovirology, 2015, 12, 55.	0.9	11
178	<i>Mamu-B*17</i> ⁺ Rhesus Macaques Vaccinated with <i>env</i> , <i>vif</i> , and <i>nef</i> Manifest Early Control of SIVmac239 Replication. Journal of Virology, 2018, 92, .	1.5	11
179	A set of reference sequences for the hepatitis C genotypes 4d, 4f, and 4k covering the full open reading frame. Journal of Medical Virology, 2008, 80, 1370-1378.	2.5	10
180	Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys. Molecular Therapy, 2017, 25, 2323-2331.	3.7	9

#	Article	IF	CITATIONS
181	Use of Dried Blood Spots to Elucidate Full-Length Transmitted/Founder HIV-1 Genomes. Pathogens and Immunity, 2016, 1, 129.	1.4	9
182	Viral evolution and escape during primary human immunodeficiency virus-1 infection: implications for vaccine design. Current Opinion in HIV and AIDS, 2008, 3, 60-66.	1.5	8
183	Innate Immune Reconstitution in Humanized Bone Marrow-Liver-Thymus (HuBLT) Mice Governs Adaptive Cellular Immune Function and Responses to HIV-1 Infection. Frontiers in Immunology, 2021, 12, 667393.	2.2	8
184	Phenotypic analysis of NS5A variant from liver transplant patient with increased cyclosporine susceptibility. Virology, 2013, 436, 268-273.	1.1	7
185	Role of HCV Viremia in Corroborated HCV Transmission Events Within Young Adult Injecting Partnerships. Open Forum Infectious Diseases, 2019, 6, ofz125.	0.4	7
186	Metagenomic Sequencing of HIV-1 in the Blood and Female Genital Tract Reveals Little Quasispecies Diversity during Acute Infection. Journal of Virology, 2019, 93, .	1.5	7
187	Poly I:C and STING agonistâ€primed DC increase lymphoid tissue polyfunctional HIVâ€1â€specific CD8 ⁺ T cells and limit CD4 ⁺ Tâ€cell loss in BLT mice. European Journal of Immunology, 2022, 52, 447-461.	1.6	7
188	New insights into evaluating effective T-cell responses to HIV. Aids, 2001, 15, S117-S126.	1.0	6
189	Lower Broadly Neutralizing Antibody Responses in Female Versus Male HIV-1 Infected Injecting Drug Users. Viruses, 2019, 11, 384.	1.5	6
190	Epidemiologically linked transmission of HIV-1 illustrates the impact of host genetics on virological outcome. Aids, 2009, 23, 259-262.	1.0	4
191	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathogens, 2020, 16, e1008577.	2.1	3
192	Hepatitis C Virus Transmission Clusters in Public Health and Correctional Settings, Wisconsin, USA, 2016–20171. Emerging Infectious Diseases, 2021, 27, 480-489.	2.0	3
193	Identification of Genetically Related HCV Infections Among Self-Described Injecting Partnerships. Clinical Infectious Diseases, 2022, 74, 993-1003.	2.9	3
194	Reply to Colson and Gerolami. Journal of Infectious Diseases, 2011, 203, 1342-1343.	1.9	1
195	Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. Journal of Clinical Investigation, 2011, 121, 821-821.	3.9	1
196	Epitope sharing as a consequence of limited MHC class I polymorphism and sequence variation in the cotton-top tamarin. Human Immunology, 1996, 47, 128.	1.2	0
197	Sensitive population profiling and genome assembly of HIV and Flaviviruses using ultra-deep sequencing technologies. Genome Biology, 2010, 11, P18.	13.9	0
198	HLA Footprints on Human Immunodeficiency Virus Type 1 Are Associated with Interclade Polymorphisms and Intraclade Phylogenetic Clustering. Journal of Virology, 2011, 85, 4635-4635.	1.5	0

#	Article	IF	CITATIONS
199	Hepatitis C Virus (HCV) Sequence Variation Induces an HCV-Specific T-Cell Phenotype Analogous to Spontaneous Resolution. Journal of Virology, 2011, 85, 4636-4636.	1.5	Ο
200	P222 DISTINCT ESCAPE PATHWAY BY HCV GENOTYPE 1A FROM A DOMINANT CD8+ T CELL RESPONSE BY SELECTION OF ALTERED EPITOPE PROCESSING. Journal of Hepatology, 2014, 60, S140.	1.8	0
201	HIV Minor Variants Detected by Next Generation Sequencing: Impact on Immune Control of HIV in the Context of HLA-B*27:05 and HLA-B*57:01. AIDS Research and Human Retroviruses, 2014, 30, A180-A181.	0.5	0
202	Interferon-I: The Pièce de Résistance of HIV-1 Transmission?. Trends in Microbiology, 2017, 25, 332-334.	3.5	0
203	Sa1525 – Visne Analysis of Hepatitis C Virus-Specific Cd8 T Cells from Direct Acting Antiviral-Treated Chronic Hcv Patients and Hcv Resolvers. Gastroenterology, 2019, 156, S-1232.	0.6	Ο
204	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0
205	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0
206	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0
207	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		Ο