
Tingbo Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5558426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationship of Starch Pasting Properties and Dough Rheology, and the Role of Starch in Determining Quality of Short Biscuit. Frontiers in Plant Science, 2022, 13, 829229.	1.7	4
2	Alleviation of Field Low-Temperature Stress in Winter Wheat by Exogenous Application of Salicylic Acid. Journal of Plant Growth Regulation, 2021, 40, 811-823.	2.8	31
3	Crosstalk between hydrogen peroxide and nitric oxide mediates primingâ€induced drought tolerance in wheat. Journal of Agronomy and Crop Science, 2021, 207, 224-235.	1.7	17
4	Improving photosynthesis to increase grain yield potential: an analysis of maize hybrids released in different years in China. Photosynthesis Research, 2021, 150, 295-311.	1.6	27
5	Magnesium Application Promotes Rubisco Activation and Contributes to High-Temperature Stress Alleviation in Wheat During the Grain Filling. Frontiers in Plant Science, 2021, 12, 675582.	1.7	13
6	Increasing plant density improves grain yield, protein quality and nitrogen agronomic efficiency of soft wheat cultivars with reduced nitrogen rate. Field Crops Research, 2021, 267, 108145.	2.3	23
7	Seed soaking with melatonin promotes seed germination under chromium stress via enhancing reserve mobilization and antioxidant metabolism in wheat. Ecotoxicology and Environmental Safety, 2021, 220, 112241.	2.9	48
8	Night-Warming Priming at the Vegetative Stage Alleviates Damage to the Flag Leaf Caused by Post-anthesis Warming in Winter Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12, 706567.	1.7	4
9	Early nitrogen deficiency favors high nitrogen recovery efficiency by improving deeper soil root growth and reducing nitrogen loss in wheat. Archives of Agronomy and Soil Science, 2020, 66, 1384-1398.	1.3	11
10	Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat. Plant Growth Regulation, 2020, 90, 109-121.	1.8	42
11	Relationships of protein composition, gluten structure, and dough rheological properties with short biscuits quality of soft wheat varieties. Agronomy Journal, 2020, 112, 1921-1930.	0.9	17
12	Investigation of Salt Tolerance Mechanisms Across a Root Developmental Gradient in Almond Rootstocks. Frontiers in Plant Science, 2020, 11, 595055.	1.7	16
13	Soil nitrogen balance and nitrogen utilization of winter wheat affected by straw management and nitrogen application in the Yangtze river basin of China. Archives of Agronomy and Soil Science, 2019, 65, 1-15.	1.3	15
14	Reduced 15N Losses by Winter and Spring Night-Warming Are Related to Root Distribution of Winter Wheat. Frontiers in Plant Science, 2019, 10, 771.	1.7	5
15	Preanthesis Root Growth and Nitrogen Uptake Improved Wheat Grain Yield and Nitrogen Use Efficiency. Agronomy Journal, 2019, 111, 3048-3056.	0.9	4
16	Low Nitrogen Priming Enhances Photosynthesis Adaptation to Water-Deficit Stress in Winter Wheat (Triticum aestivum L.) Seedlings. Frontiers in Plant Science, 2019, 10, 818.	1.7	23
17	Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system. Agricultural Water Management, 2019, 212, 252-261.	2.4	16
18	Impaired electron transfer accounts for the photosynthesis inhibition in wheat seedlings (<scp><i>Triticum aestivum</i></scp> L.) subjected to ammonium stress. Physiologia Plantarum, 2019, 167, 159-172.	2.6	17

Τίνςβο Dai

#	Article	IF	CITATIONS
19	Drought priming during the vegetative stage can enhance post-anthesis drought tolerance by improving photosynthetic capacity in winter wheat. Arid Land Research and Management, 2019, 33, 183-199.	0.6	12
20	Nitrogen topdressing timing modifies the gluten quality and grain hardness related protein levels as revealed by iTRAQ. Food Chemistry, 2019, 277, 135-144.	4.2	28
21	Winter and spring night-warming improve root extension and soil nitrogen supply to increase nitrogen uptake and utilization of winter wheat (Triticum aestivum L.). European Journal of Agronomy, 2018, 96, 96-107.	1.9	30
22	Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 2018, 8, 4615.	1.6	317
23	Herbicide isoproturon aggravates the damage of low temperature stress and exogenous ascorbic acid alleviates the combined stress in wheat seedlings. Plant Growth Regulation, 2018, 84, 293-301.	1.8	15
24	Nitrogen topdressing timing modifies free amino acids profiles and storage protein gene expression in wheat grain. BMC Plant Biology, 2018, 18, 353.	1.6	28
25	Enhanced Rubisco activation associated with maintenance of electron transport alleviates inhibition of photosynthesis under low nitrogen conditions in winter wheat seedlings. Journal of Experimental Botany, 2018, 69, 5477-5488.	2.4	15
26	Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat. Frontiers in Plant Science, 2018, 9, 1137.	1.7	65
27	Effect of post-anthesis waterlogging on biosynthesis and granule size distribution of starch in wheat grains. Plant Physiology and Biochemistry, 2018, 132, 222-228.	2.8	22
28	Parental Drought-Priming Enhances Tolerance to Post-anthesis Drought in Offspring of Wheat. Frontiers in Plant Science, 2018, 9, 261.	1.7	75
29	The Role of Hydrogen Peroxide in Mediating the Mechanical Wounding-Induced Freezing Tolerance in Wheat. Frontiers in Plant Science, 2018, 9, 327.	1.7	24
30	Heat Priming During Early Reproductive Stages Enhances Thermo-Tolerance to Post-anthesis Heat Stress via Improving Photosynthesis and Plant Productivity in Winter Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018, 9, 805.	1.7	70
31	Improved leaf nitrogen reutilisation and Rubisco activation under short-term nitrogen-deficient conditions promotes photosynthesis in winter wheat (Triticum aestivum L.) at the seedling stage. Functional Plant Biology, 2018, 45, 840.	1.1	16
32	Accumulation of Highâ€Molecularâ€Weight Glutenin Subunits in Superior and Inferior Grains of a Winter Wheat, Yangmai 158. Cereal Chemistry, 2017, 94, 508-512.	1.1	3
33	Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta, 2017, 246, 509-524.	1.6	63
34	Physiological responses of wheat (Triticum aestivum L.) germination to elevated ammonium concentrations: reserve mobilization, sugar utilization, and antioxidant metabolism. Plant Growth Regulation, 2017, 81, 209-220.	1.8	13
35	Starch granule size distribution in wheat endosperm indirectly correlates to pasting property indicated by near-isogenic lines with different null- <i>waxy</i> alleles. Starch/Staerke, 2017, 69, 1600139.	1.1	7
36	Winter Night-Warming Improves Post-anthesis Physiological Activities and Sink Strength in Relation to Grain Filling in Winter Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2017, 8, 992.	1.7	14

Τίνςβο Dai

#	Article	IF	CITATIONS
37	Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat. Frontiers in Plant Science, 2017, 8, 1284.	1.7	37
38	Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress. PLoS ONE, 2016, 11, e0160997.	1.1	18
39	Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Frontiers in Plant Science, 2016, 7, 501.	1.7	65
40	Variations in Protein Concentration and Nitrogen Sources in Different Positions of Grain in Wheat. Frontiers in Plant Science, 2016, 7, 942.	1.7	21
41	Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods. Frontiers in Plant Science, 2016, 7, 981.	1.7	109
42	Adaptation to and recovery from drought stress at vegetative stages in wheat (Triticum aestivum) cultivars. Functional Plant Biology, 2016, 43, 1159.	1.1	50
43	Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Plant Physiology and Biochemistry, 2016, 106, 218-227.	2.8	109
44	Adaptation to rhizosphere acidification is a necessary prerequisite for wheat (Triticum aestivum L.) seedling resistance to ammonium stress. Plant Physiology and Biochemistry, 2016, 108, 447-455.	2.8	27
45	Salt stress increases content and size of glutenin macropolymers in wheat grain. Food Chemistry, 2016, 197, 516-521.	4.2	32
46	Changes of transcriptome and proteome are associated with the enhanced post-anthesis high temperature tolerance induced by pre-anthesis heat priming in wheat. Plant Growth Regulation, 2016, 79, 135-145.	1.8	22
47	Winter Wheat Photosynthesis and Grain Yield Responses to Spring Freeze. Agronomy Journal, 2015, 107, 1002-1010.	0.9	77
48	Water-deficit treatment followed by re-watering stimulates seminal root growth associated with hormone balance and photosynthesis in wheat (Triticum aestivum L.) seedlings. Plant Growth Regulation, 2015, 77, 201-210.	1.8	30
49	Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat. BMC Plant Biology, 2015, 15, 219.	1.6	23
50	Wheat plants exposed to winter warming are more susceptible to low temperature stress in the spring. Plant Growth Regulation, 2015, 77, 11-19.	1.8	38
51	Winter night warming improves pre-anthesis crop growth and post-anthesis photosynthesis involved in grain yield of winter wheat (Triticum aestivum L.). Field Crops Research, 2015, 178, 100-108.	2.3	44
52	Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	45
53	Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities inÂwheat seedlings. Plant Physiology and Biochemistry, 2014, 74, 185-192.	2.8	125
54	Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Functional Plant Biology, 2014, 41, 690.	1.1	57

Τίνςβο Dai

#	Article	IF	CITATIONS
55	Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiology and Biochemistry, 2014, 82, 34-43.	2.8	125
56	Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation, 2013, 70, 257-263.	1.8	62
57	Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regulation, 2013, 71, 31-40.	1.8	108
58	Generation and scavenging of reactive oxygen species in wheat flag leaves under combined shading and waterlogging stress. Functional Plant Biology, 2012, 39, 71.	1.1	20
59	Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice–wheat rotation. Field Crops Research, 2012, 127, 241-247.	2.3	104
60	The fates of 15N fertilizer in relation to root distributions of winter wheat under different N splits. European Journal of Agronomy, 2012, 40, 86-93.	1.9	66
61	Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiologiae Plantarum, 2012, 34, 191-202.	1.0	28
62	Comparisons of cadmium tolerance and accumulation at seedling stage in wheat varieties grown in different decades in China. Acta Physiologiae Plantarum, 2011, 33, 1811-1819.	1.0	3
63	Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2011, 61, 410-420.	0.3	7
64	Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum, 2010, 32, 365-373.	1.0	92
65	Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling. Journal of Cereal Science, 2010, 51, 226-233.	1.8	59
66	Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 2010, 33, 267-275.	1.9	159
67	Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Science, 2009, 176, 575-582.	1.7	196
68	New flavonoid-C-glycosides from Triticum aestivum. Chemistry of Natural Compounds, 2008, 44, 171-173.	0.2	9
69	Nitrogen fertiliser rate and post-anthesis waterlogging effects on carbohydrate and nitrogen dynamics in wheat. Plant and Soil, 2008, 304, 301-314.	1.8	91
70	Spatial Distribution of Leaf Area Index and Leaf N Content In Relation To Grain Yield and Nitrogen Uptake in Rice. Plant Production Science, 2007, 10, 136-145.	0.9	13
71	Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regulation, 2007, 51, 149-158.	1.8	162
72	Improvement of pistillate flowers yield with GA3 in heavy metals treated plants. Plant Growth Regulation, 2006, 48, 247.	1.8	7

#	Article	IF	CITATIONS
73	Predicting the Protein Content of Grain in Winter Wheat with Meteorological and Genotypic Factors. Plant Production Science, 2006, 9, 323-333.	0.9	21
74	Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regulation, 2003, 41, 247-257.	1.8	99