Gang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5558411/publications.pdf

Version: 2024-02-01

61857 76769 6,370 144 43 74 citations h-index g-index papers 146 146 146 6640 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Superelastic and Superhydrophobic Nanofiber-Assembled Cellular Aerogels for Effective Separation of Oil/Water Emulsions. ACS Nano, 2015, 9, 3791-3799.	7.3	612
2	Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science, 2013, 58, 1173-1243.	16.0	440
3	Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Science Advances, 2018, 4, eaar5931.	4.7	221
4	Supercapacitive Iontronic Nanofabric Sensing. Advanced Materials, 2017, 29, 1700253.	11.1	187
5	Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. Journal of Materials Chemistry, 2012, 22, 1445-1452.	6.7	170
6	Electreted polyetherimide–silica fibrous membranes for enhanced filtration of fine particles. Journal of Colloid and Interface Science, 2015, 439, 12-20.	5.0	167
7	A High-Throughput, Controllable, and Environmentally Benign Fabrication Process of Thermoplastic Nanofibers. Macromolecular Materials and Engineering, 2007, 292, 407-414.	1.7	141
8	Novel regenerable N-halamine polymeric biocides. I. Synthesis, characterization, and antibacterial activity of hydantoin-containing polymers. Journal of Applied Polymer Science, 2001, 80, 2460-2467.	1.3	139
9	Durable and Regenerable Antibacterial Finishing of Fabrics with a New Hydantoin Derivative. Industrial & Derivative. Industrial & Derivative.	1.8	132
10	Synthesis of mesoporous magnetic Fe3O4@carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification. Journal of Materials Chemistry, 2012, 22, 4619.	6.7	118
11	Durable and regenerable antimicrobial textiles: Synthesis and applications of 3-methylol-2,2,5,5-tetramethyl-imidazolidin-4-one (MTMIO). Journal of Applied Polymer Science, 2003, 89, 2418-2425.	1.3	111
12	Highly flexible, core-shell heterostructured, and visible-light-driven titania-based nanofibrous membranes for antibiotic removal and E. coil inactivation. Chemical Engineering Journal, 2020, 379, 122269.	6.6	111
13	Flexible and Washable Poly(Ionic Liquid) Nanofibrous Membrane with Moisture Proof Pressure Sensing for Real-Life Wearable Electronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27200-27209.	4.0	109
14	High Sensitivity Ammonia Sensor Using a Hierarchical Polyaniline/Poly(ethylene-co-glycidyl) Tj ETQq0 0 0 rgBT /Ov6473-6477.	verlock 10 4.0	Tf 50 227 Td 105
15	Soft Zr-doped TiO2 Nanofibrous Membranes with Enhanced Photocatalytic Activity for Water Purification. Scientific Reports, 2017, 7, 1636.	1.6	101
16	A new cyclic N-halamine biocidal polymer. Industrial & Engineering Chemistry Research, 1994, 33, 168-170.	1.8	96
17	Continuously Producible Ultrasensitive Wearable Strain Sensor Assembled with Three-Dimensional Interpenetrating Ag Nanowires/Polyolefin Elastomer Nanofibrous Composite Yarn. ACS Applied Materials & Diterfaces, 2017, 9, 42058-42066.	4.0	91
18	Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Advances, 2013, 3, 2248-2255.	1.7	87

#	Article	IF	Citations
19	Antibacterial Surgical Silk Sutures Using a High-Performance Slow-Release Carrier Coating System. ACS Applied Materials & Distriction (2015), 7, 22394-22403.	4.0	86
20	Ultrasensitive label-free electrochemical immunosensor based on PVA-co-PE nanofibrous membrane for the detection of chloramphenicol residues in milk. Biosensors and Bioelectronics, 2018, 117, 838-844.	5.3	76
21	Chemistry of Durable and Regenerable Biocidal Textiles. Journal of Chemical Education, 2005, 82, 60.	1.1	75
22	Biocidal and Rechargeable <i>N</i> -Halamine Nanofibrous Membranes for Highly Efficient Water Disinfection. ACS Biomaterials Science and Engineering, 2017, 3, 854-862.	2.6	73
23	Bioinspired Smart Moisture Actuators Based on Nanoscale Cellulose Materials and Porous, Hydrophilic EVOH Nanofibrous Membranes. ACS Applied Materials & 2019, 11, 1440-1448.	4.0	73
24	Rechargeable Antibacterial $\langle i \rangle N \langle i \rangle$ -Halamine Films with Antifouling Function for Food Packaging Applications. ACS Applied Materials & Enterfaces, 2019, 11, 17814-17822.	4.0	71
25	Antimicrobial Functions on Cellulose Materials Introduced by Anthraquinone Vat Dyes. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10830-10835.	4.0	65
26	Polydopamine-induced growth of mineralized \hat{l}^3 -FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chemical Engineering Journal, 2020, 382, 122988.	6.6	65
27	Durable and regenerable antimicrobial textiles: Improving efficacy and durability of biocidal functions. Journal of Applied Polymer Science, 2004, 91, 2588-2593.	1.3	64
28	Production of Reactive Oxygen Species by Photoactive Anthraquinone Compounds and Their Applications in Wastewater Treatment. Industrial & Engineering Chemistry Research, 2011, 50, 5326-5333.	1.8	63
29	New Refreshable <i>N</i> -Halamine Polymeric Biocides: <i>N</i> -Chlorination of Acyclic Amide Grafted Cellulose. Industrial & Engineering Chemistry Research, 2009, 48, 613-618.	1.8	62
30	Daylight-Induced Antibacterial and Antiviral Cotton Cloth for Offensive Personal Protection. ACS Applied Materials & Interfaces, 2020, 12, 49442-49451.	4.0	62
31	Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends. European Polymer Journal, 2007, 43, 3587-3596.	2.6	60
32	Label-free ultrasensitive colorimetric detection of copper(ii) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips. Journal of Materials Chemistry, 2011, 21, 13345.	6.7	60
33	Synergistic adsorption‑photocatalytic degradation of tetracycline by microcrystalline cellulose composite aerogel dopped with montmorillonite hosted methylene blue. Chemical Engineering Journal, 2022, 430, 133077.	6.6	59
34	Colorimetric strips for visual lead ion recognition utilizing polydiacetylene embedded nanofibers. Journal of Materials Chemistry A, 2014, 2, 18304-18312.	5.2	58
35	Multifunctional finishing of cotton fabrics with $3,3\hat{a}\in ^2$, $4,4\hat{a}\in ^2$ -benzophenone tetracarboxylic dianhydride: Reaction mechanism. Carbohydrate Polymers, 2013, 95, 768-772.	5.1	55
36	Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: II. Esterification. Carbohydrate Polymers, 2015, 132, 228-236.	5.1	50

#	Article	IF	Citations
37	An Innovative Nanobody-Based Electrochemical Immunosensor Using Decorated Nylon Nanofibers for Point-of-Care Monitoring of Human Exposure to Pyrethroid Insecticides. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6159-6168.	4.0	50
38	Durable and rechargeable biocidal polypropylene polymers and fibers prepared by using reactive extrusion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 93-101.	1.6	48
39	Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification. Ceramics International, 2020, 46, 468-475.	2.3	48
40	Ultrasensitive Wearable Pressure Sensors Assembled by Surface-Patterned Polyolefin Elastomer Nanofiber Membrane Interpenetrated with Silver Nanowires. ACS Applied Materials & Diterfaces, 2018, 10, 42706-42714.	4.0	47
41	Daylight-Induced Antibacterial and Antiviral Nanofibrous Membranes Containing Vitamin K Derivatives for Personal Protective Equipment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49416-49430.	4.0	46
42	Design and fabrication of a highly sensitive and naked-eye distinguishable colorimetric biosensor for chloramphenicol detection by using ELISA on nanofibrous membranes. Talanta, 2020, 217, 121054.	2.9	46
43	Layer-by-Layer Structured Nanofiber Membranes with Photoinduced Self-Cleaning Functions. Journal of Physical Chemistry C, 2011, 115, 6825-6832.	1.5	45
44	Novel fluorinated polyurethane decorated electrospun silica nanofibrous membranes exhibiting robust waterproof and breathable performances. RSC Advances, 2013, 3, 7562.	1.7	45
45	Cibacron Blue F3GA functionalized poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membranes as high efficient affinity adsorption materials. Journal of Membrane Science, 2011, 385-386, 269-276.	4.1	43
46	Photoactive antibacterial cotton fabrics treated by 3,3′,4,4′-benzophenonetetracarboxylic dianhydride. Carbohydrate Polymers, 2011, 84, 1027-1032.	5.1	43
47	Strategy of Constructing Light-Weight and Highly Compressible Graphene-Based Aerogels with an Ordered Unique Configuration for Wearable Piezoresistive Sensors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19350-19362.	4.0	41
48	The synthesis of novel cationic anthraquinone dyes with high potent antimicrobial activity. Dyes and Pigments, 2008, 77, 380-386.	2.0	40
49	Functional modification of poly(ethylene terephthalate) with an allyl monomer: Chemistry and structure characterization. Polymer, 2008, 49, 5225-5232.	1.8	40
50	Mechanically Robust and Transparent <i>N</i> à€Halamine Grafted PVA oâ€PE Films with Renewable Antimicrobial Activity. Macromolecular Bioscience, 2017, 17, 1600304.	2.1	40
51	Constitution of a visual detection system for lead(<scp>ii</scp>) on polydiacetylene–glycine embedded nanofibrous membranes. Journal of Materials Chemistry A, 2015, 3, 9722-9730.	5. 2	39
52	A Study on Melt Grafting of N-Halamine Moieties onto Polyethylene and Their Antibacterial Activities. Macromolecules, 2009, 42, 1948-1954.	2,2	38
53	Chemical and biological decontamination functions of nanofibrous membranes. Journal of Materials Chemistry, 2012, 22, 8532.	6.7	36
54	Photo-induced self-cleaning functions on 2-anthraquinone carboxylic acid treated cotton fabrics. Journal of Materials Chemistry, 2011, 21, 15383.	6.7	35

#	Article	IF	Citations
55	Ultrafine Silk-Derived Nanofibrous Membranes Exhibiting Effective Lysozyme Adsorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 8777-8784.	3.2	33
56	Reusable anionic sulfonate functionalized nanofibrous membranes for cellulase enzyme adsorption and separation. Colloids and Surfaces B: Biointerfaces, 2018, 170, 588-595.	2.5	33
57	Visible-light-driven, hierarchically heterostructured, and flexible silver/bismuth oxyiodide/titania nanofibrous membranes for highly efficient water disinfection. Journal of Colloid and Interface Science, 2019, 555, 636-646.	5.0	32
58	Durable and Regenerable Antimicrobial Textiles:Â Chlorine Transfer among Halamine Structures. Industrial & Engineering Chemistry Research, 2005, 44, 852-856.	1.8	31
59	Photoactive antimicrobial agents/polyurethane finished leather. Journal of Applied Polymer Science, 2010, 115, 1138-1144.	1.3	31
60	Light-induced antibacterial and UV-protective properties of polyamide 56 biomaterial modified with anthraquinone and benzophenone derivatives. Materials and Design, 2017, 130, 215-222.	3.3	31
61	Photoactivities of Vitamin K Derivatives and Potential Applications as Daylight-Activated Antimicrobial Agents. ACS Sustainable Chemistry and Engineering, 2019, 7, 18493-18504.	3.2	31
62	Photo-induced antimicrobial and decontaminating agents: recent progresses in polymer and textile applications. Textile Reseach Journal, 2013, 83, 532-542.	1.1	30
63	Copper complex formed with pyridine rings grafted on cellulose nanofibrous membranes for highly efficient lysozyme adsorption. Separation and Purification Technology, 2020, 250, 117086.	3.9	30
64	Multifunctional finishing of cotton with $3,3\hat{a}\in^2$, $4,4\hat{a}\in^2$ -benzophenone tetracarboxylic acid: Functional performance. Carbohydrate Polymers, 2013, 96, 435-439.	5.1	29
65	Biomimetic biodegradable Ag@Au nanoparticle-embedded ureteral stent with a constantly renewable contact-killing antimicrobial surface and antibiofilm and extraction-free properties. Acta Biomaterialia, 2020, 114, 117-132.	4.1	29
66	<i>N</i> -Halamine Polypropylene Nonwoven Fabrics with Rechargeable Antibacterial and Antiviral Functions for Medical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2329-2336.	2.6	29
67	Solid-phase pink-to-purple chromatic strips utilizing gold probes and nanofibrous membranes combined system for lead (II) assaying. Sensors and Actuators B: Chemical, 2014, 204, 673-681.	4.0	27
68	A signal-on electrochemical aptasensor based on silanized cellulose nanofibers for rapid point-of-use detection of ochratoxin A. Mikrochimica Acta, 2020, 187, 535.	2.5	27
69	An antimicrobial cationic reactive dye: Synthesis and applications on cellulosic fibers. Journal of Applied Polymer Science, 2008, 108, 1917-1923.	1.3	26
70	Chlorine Rechargeable Biocidal <i>N</i> -Halamine Nanofibrous Membranes Incorporated with Bifunctional Zwitterionic Polymers for Efficient Water Disinfection Applications. ACS Applied Materials & Disinfection Applications. ACS Applied Materials & Disinfection Applications.	4.0	25
71	Biocidal acyclic halamine polymers: Conversion of acrylamideâ€∢i>grafted otton to acyclic halamine. Journal of Applied Polymer Science, 2008, 108, 3480-3486.	1.3	23
72	Generation of hydroxyl radicals and effective whitening of cotton fabrics by H2O2 under UVB irradiation. Carbohydrate Polymers, 2017, 160, 153-162.	5.1	22

#	Article	IF	Citations
73	Preparation and Characterization of Antibacterial Polypropylene Meshes with Covalently Incorporated \hat{l}^2 -Cyclodextrins and Captured Antimicrobial Agent for Hernia Repair. Polymers, 2018, 10, 58.	2.0	21
74	Rechargeable Photoactive Silk-Derived Nanofibrous Membranes for Degradation of Reactive Red 195. ACS Sustainable Chemistry and Engineering, 2019, 7, 986-993.	3.2	21
75	Hansen solubility parameters as a useful tool in searching for solvents for soy proteins. RSC Advances, 2015, 5, 1890-1892.	1.7	20
76	Conformational Changes of Soy Proteins under High-Intensity Ultrasound and High-Speed Shearing Treatments. ACS Sustainable Chemistry and Engineering, 2019, 7, 8117-8125.	3.2	20
77	Light-driven antimicrobial activities of vitamin K3 against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Enteritidis. Food Control, 2020, 114, 107235.	2.8	20
78	Light-induced surface graft polymerizations initiated by an anthraquinone dye on cotton fibers. Carbohydrate Polymers, 2014, 112, 158-164.	5.1	19
79	Control of surface radical graft polymerization on polyester fibers by using Hansen solubility parameters as a measurement of the affinity of chemicals to materials. RSC Advances, 2017, 7, 13299-13303.	1.7	18
80	Conductive Polymer Nanotubes for Electrochromic Applications. ACS Applied Nano Materials, 2019, 2, 3154-3160.	2.4	18
81	An environmentally friendly bleaching process for cotton fabrics: mechanism and application of UV/H2O2 system. Cellulose, 2020, 27, 1071-1083.	2.4	18
82	The application of ultraviolet-induced photo-crosslinking in edible film preparation and its implication in food safety. LWT - Food Science and Technology, 2020, 131, 109791.	2.5	18
83	Integration of photo-induced biocidal and hydrophilic antifouling functions on nanofibrous membranes with demonstrated reduction of biofilm formation. Journal of Colloid and Interface Science, 2020, 578, 779-787.	5.0	18
84	Synthesis and applications of vegetable oil-based fluorocarbon water repellent agents on cotton fabrics. Carbohydrate Polymers, 2012, 89, 193-198.	5.1	17
85	Antibiofilm Effect of Poly(Vinyl Alcohol- <i>co</i> -Ethylene) Halamine Film against Listeria innocua and Escherichia coli O157:H7. Applied and Environmental Microbiology, 2017, 83, .	1.4	17
86	Modification of cotton fabrics with 2-diethylaminoethyl chloride for salt-free dyeing with anionic dyes. Cellulose, 2021, 28, 6699.	2.4	17
87	A study of radical graft copolymerization on polypropylene during extrusion using two peroxide initiators. Polymer International, 2010, 59, 155-161.	1.6	16
88	Sensitivity-Tunable Colorimetric Detection of Chloropicrin Vapor on Nylon-6 Nanofibrous Membrane Based on a Detoxification Reaction with Biological Thiols. ACS Sensors, 2018, 3, 858-866.	4.0	16
89	Controlled Levofloxacin Release and Antibacterial Properties of \hat{l}^2 -Cyclodextrins-Grafted Polypropylene Mesh Devices for Hernia Repair. Polymers, 2018, 10, 493.	2.0	16
90	Improving the Sensitivity of Nanofibrous Membrane-Based ELISA for On-Site Antibiotics Detection. ACS Sensors, 2022, 7, 1458-1466.	4.0	16

#	Article	IF	Citations
91	A Novel <i>N</i> -Halamine Biocidal Nanofibrous Membrane for Chlorine Rechargeable Rapid Water Disinfection Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41056-41065.	4.0	15
92	Layerâ€byâ€layer structured gelatin nanofiber membranes with photoinduced antibacterial functions. Journal of Applied Polymer Science, 2013, 128, 970-975.	1.3	14
93	Highly sensitive colorimetric paper sensor for methyl isothiocyanate (MITC): Using its toxicological reaction. Sensors and Actuators B: Chemical, 2018, 261, 178-187.	4.0	14
94	Design and Synthesis of Core–Shell Carbon Polymer Dots with Highly Stable Fluorescence in Polymeric Materials. ACS Applied Nano Materials, 2019, 2, 6503-6512.	2.4	14
95	Mechanism of H2O2/bleach activators and related factors. Cellulose, 2019, 26, 2743-2757.	2.4	14
96	Incorporation of Antimicrobial Bio-Based Carriers onto Poly(vinyl alcohol- <i>co</i> ethylene) Surface for Enhanced Antimicrobial Activity. ACS Applied Materials & Diterfaces, 2021, 13, 36275-36285.	4.0	14
97	Colorimetric Detection of Carcinogenic Alkylating Fumigants on Nylon-6 Nanofibrous Membrane. Part I: Investigation of 4-(<i>p</i> hitrobenzyl)pyridine as a "New―Sensing Agent with Ultrahigh Sensitivity. Analytical Chemistry, 2018, 90, 14593-14601.	3.2	13
98	Antimicrobial finish of cotton fabrics treated by sophorolipids combined with 1,2,3,4-butanetetracarboxyic acid. Cellulose, 2020, 27, 2859-2872.	2.4	13
99	Functionalized nanofibrous nylon 6 membranes for efficient reusable and selective separation of laccase enzyme. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111190.	2.5	13
100	Unique "posture―of rose Bengal for fabricating personal protective equipment with enhanced daylight-induced biocidal efficiency. Materials Advances, 2021, 2, 3569-3578.	2.6	13
101	Cationic microcrystalline cellulose – Montmorillonite composite aerogel for preconcentration of inorganic anions from dairy wastewater. Talanta, 2022, 242, 123281.	2.9	13
102	Colorimetric Detection of Carcinogenic Alkylating Fumigants on a Nylon 6 Nanofibrous Membrane. Part II: Self-Catalysis of 2-Diethylaminoethyl-Modified Sensor Matrix for Improvement of Sensitivity. ACS Applied Materials & Diterfaces, 2019, 11, 13632-13641.	4.0	12
103	Disinfectant Performance of a Chlorine Regenerable Antibacterial Microfiber Fabric as a Reusable Wiper. Materials, 2019, 12, 127.	1.3	12
104	Sample-to-Answer Robotic ELISA. Analytical Chemistry, 2021, 93, 11424-11432.	3.2	12
105	Sustainable and Reusable Gelatin-Based Hydrogel "Jelly Ice Cubes―as Food Coolant. II: Ideal Freeze–Thaw Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 15365-15374.	3.2	12
106	Fabricating durable, fluorideâ€free, water repellency cotton fabrics with <scp>CPDMS</scp> . Journal of Applied Polymer Science, 2018, 135, 46396.	1.3	11
107	Hierarchical Nucleophilic Nanofibrous Membranes for Fast, Durable, and Bareâ€Eye Visible Detoxification of Carcinogenic Alkylating Toxicants. Advanced Functional Materials, 2019, 29, 1905990.	7.8	11
108	Scalable fabrication of sulfated silk fibroin nanofibrous membranes for efficient lipase adsorption and recovery. International Journal of Biological Macromolecules, 2018, 111, 738-745.	3.6	10

#	Article	IF	Citations
109	Designed Ionic Microchannels for Ultrasensitive Detection and Efficient Removal of Formaldehyde in an Aqueous Solution. ACS Applied Materials & Interfaces, 2020, 12, 1806-1816.	4.0	10
110	Developing an Injectable Nanofibrous Extracellular Matrix Hydrogel With an Integrin $\hat{l}\pm v\hat{l}^2$ 3 Ligand to Improve Endothelial Cell Survival, Engraftment and Vascularization. Frontiers in Bioengineering and Biotechnology, 2020, 8, 890.	2.0	10
111	Fabrication of polydopamine-based NIR-light responsive imprinted nanofibrous membrane for effective lysozyme extraction and controlled release from chicken egg white. Food Chemistry, 2021, 357, 129613.	4.2	10
112	Highly sensitive, selective, and reusable nanofibrous membrane-based carbon polymer dots sensors for detection of Cr(VI) in water. Applied Surface Science, 2022, 582, 152392.	3.1	10
113	Fabrication and evaluation of nanofibrous membranes with photo-induced chemical and biological decontamination functions. RSC Advances, 2014, 4, 50858-50865.	1.7	9
114	Wearable super-adsorptive fibrous equipment <i>in situ</i> grafted with porous organic polymers for carcinogenic fumigant defense and detoxification. Journal of Materials Chemistry A, 2020, 8, 24128-24136.	5.2	9
115	Surface modification of poly(ethylene terephthalate) fibers via controlled radical graft polymerization. Journal of Applied Polymer Science, 2018, 135, 45990.	1.3	8
116	Photoactive Water-Soluble Vitamin K: A Novel Amphiphilic Photoinduced Antibacterial Agent. ACS Sustainable Chemistry and Engineering, 2021, 9, 8280-8294.	3.2	8
117	Controlled surface functionalization of poly(ethylene terephthalate) fibers with varied vinyl monomers via radical graft copolymerization. Materials Today Communications, 2018, 17, 124-132.	0.9	7
118	Bio-inspired ultrasensitive colorimetric detection of methyl isothiocyanate on nylon-6 nanofibrous membrane: A comparison of biological thiol reactivities. Journal of Hazardous Materials, 2019, 362, 375-382.	6.5	7
119	Durable and chlorine rechargeable biocidal composite material for improved food safety. Cellulose, 2021, 28, 503-515.	2.4	7
120	Research progress in chemical and biological protective materials with integrated conventional "decontamination-and-sensing―functions. Materials Science and Engineering Reports, 2021, 145, 100626.	14.8	7
121	Effective tetracycline removal from liquid streams of dairy manure via hierarchical poly (vinyl) Tj ETQq1 1 0.7843. Interface Science, 2021, 597, 9-20.	14 rgBT /O 5.0	verlock 10 T 7
122	Photodynamic control of fungicide-resistant Penicillium digitatum by vitamin K3 water-soluble analogue. Food Control, 2022, 135, 108807.	2.8	7
123	Strategies and perspectives of developing anti-biofilm materials for improved food safety. Food Research International, 2022, 159, 111543.	2.9	7
124	Characterization of Conformational Structures of Plant Proteins in Solutions. Industrial & Engineering Chemistry Research, 2015, 54, 188-197.	1.8	6
125	Ultra-Sensitive Piezo-Resistive Sensors Constructed with Reduced Graphene Oxide/Polyolefin Elastomer (RGO/POE) Nanofiber Aerogels. Polymers, 2019, 11, 1883.	2.0	6
126	Rapid removal of nitrate from liquid dairy manure by cationic poly (vinyl alcohol-co-ethylene) nanofiber membrane. Journal of Environmental Management, 2021, 282, 111574.	3.8	6

#	Article	IF	Citations
127	Diffusion of Protein Molecules through Microporous Nanofibrous Polyacrylonitrile Membranes. ACS Applied Polymer Materials, 2021, 3, 1618-1627.	2.0	6
128	Daylight-activated fumigant detoxifying nanofibrous membrane based on thiol-ene click chemistry. Journal of Hazardous Materials, 2021, 406, 124723.	6.5	6
129	Antimicrobial N-Halamine incorporated Poly(Vinyl alcohol-co-ethylene) films for reducing cross-contamination of fresh produce. Food Control, 2021, 124, 107880.	2.8	6
130	Sustainable and Reusable Gelatin-Based Hydrogel "Jelly Ice Cubes―as Food Coolant. I: Feasibilities and Challenges. ACS Sustainable Chemistry and Engineering, 2021, 9, 15357-15364.	3.2	6
131	Production of Organizational Chiral Structures by Design. Journal of the American Chemical Society, 2022, 144, 824-831.	6.6	6
132	AQC functionalized CNCs/PVA-co-PE composite nanofibrous membrane with flower-like microstructures for photo-induced multi-functional protective clothing. Cellulose, 2018, 25, 4819-4830.	2.4	5
133	Fabrication of robust functional poly-cationic nanodots on surfaces of nucleophilic nanofibrous membrane. Applied Surface Science, 2020, 528, 146587.	3.1	5
134	What We Are Learning from COVID-19 for Respiratory Protection: Contemporary and Emerging Issues. Polymers, 2021, 13, 4165.	2.0	5
135	Robust, rapid, and ultrasensitive colorimetric sensors through dye chemisorption on poly-cationic nanodots. Talanta, 2020, 219, 121149.	2.9	4
136	Photoactivities of Two Vitamin B Derivatives and Their Applications in the Perpetration of Photoinduced Antibacterial Nanofibrous Membranes. ACS Applied Bio Materials, 2021, 4, 8584-8596.	2.3	4
137	Novel Robust, Reusable, Microbialâ€Resistant, and Compostable Proteinâ€Based Cooling Media. Advanced Functional Materials, 2022, 32, .	7.8	4
138	Daylight-Active Cellulose Nanocrystals Containing Anthraquinone Structures. Materials, 2020, 13, 3547.	1.3	2
139	Antibacterial Polylactic- <i>co</i> -glycolic Acid Braided Threads Using Plasma and Coating Modifications for Acupoint Catgut Embedding Therapy Applications. ACS Applied Bio Materials, 2020, 3, 1902-1912.	2.3	2
140	Chlorine Rechargeable Halamine Biocidal Alginate/Polyacrylamide Hydrogel Beads for Improved Sanitization of Fresh Produce. Journal of Agricultural and Food Chemistry, 2021, 69, 13323-13330.	2.4	2
141	Improved Processability of Soy Proteins Due to Conformational Controls under a Combination of Chemical and Mechanical Treatments. ACS Agricultural Science and Technology, 2021, 1, 11-20.	1.0	2
142	Stabilization of flavin mononucleotide by capturing its "tail―with porous organic polymers for long-term photocatalytic degradation of micropollutants. Journal of Hazardous Materials, 2022, 435, 128982.	6.5	2
143	Colorimetric sensors: taking merits of nanofibrous membrane for volatile toxicants detection with ultra-high sensitivity., 2020,, 213-241.		1
144	Macromol. Rapid Commun. 21/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	O