List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5558348/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Vasoregulation by the $\hat{1}^21$ subunit of the calcium-activated potassium channel. Nature, 2000, 407, 870-876.                                                                                                                 | 13.7 | 772       |
| 2  | Regulation of arterial diameter and wall [Ca <sup>2+</sup> ] in cerebral arteries of rat by membrane potential and intravascular pressure. Journal of Physiology, 1998, 508, 199-209.                                              | 1.3  | 583       |
| 3  | Local potassium signaling couples neuronal activity to vasodilation in the brain. Nature<br>Neuroscience, 2006, 9, 1397-1403.                                                                                                      | 7.1  | 487       |
| 4  | Elementary Ca <sup>2+</sup> Signals Through Endothelial TRPV4 Channels Regulate Vascular<br>Function. Science, 2012, 336, 597-601.                                                                                                 | 6.0  | 479       |
| 5  | Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels.<br>Nature, 1990, 344, 770-773.                                                                                                | 13.7 | 446       |
| 6  | Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow.<br>Nature Neuroscience, 2017, 20, 717-726.                                                                                      | 7.1  | 364       |
| 7  | Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature, 1988, 336, 382-385.                                                                                                                     | 13.7 | 323       |
| 8  | Altered Expression of Small-Conductance Ca 2+ -Activated K + (SK3) Channels Modulates Arterial Tone<br>and Blood Pressure. Circulation Research, 2003, 93, 124-131.                                                                | 2.0  | 301       |
| 9  | Astrocytic endfoot Ca <sup>2+</sup> and BK channels determine both arteriolar dilation and constriction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3811-3816.                    | 3.3  | 265       |
| 10 | Functional Coupling of Ryanodine Receptors to KCa Channels in Smooth Muscle Cells from Rat<br>Cerebral Arteries. Journal of General Physiology, 1999, 113, 229-238.                                                                | 0.9  | 261       |
| 11 | Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of<br>myoendothelial projections. Proceedings of the National Academy of Sciences of the United States of<br>America, 2008, 105, 9627-9632. | 3.3  | 252       |
| 12 | Ryanodine receptors regulate arterial diameter and wall [Ca <sup>2+</sup> ] in cerebral arteries of rat<br>via Ca <sup>2+</sup> â€dependent K <sup>+</sup> channels. Journal of Physiology, 1998, 508, 211-221.                    | 1.3  | 247       |
| 13 | Calcium Dynamics in Cortical Astrocytes and Arterioles During Neurovascular Coupling. Circulation Research, 2004, 95, e73-81.                                                                                                      | 2.0  | 230       |
| 14 | Frequency modulation of Ca <sup>2+</sup> sparks is involved in regulation of arterial diameter by cyclic nucleotides. American Journal of Physiology - Cell Physiology, 1998, 274, C1346-C1355.                                    | 2.1  | 194       |
| 15 | Micromolar Ca <sup>2+</sup> from sparks activates Ca <sup>2+</sup> -sensitive K <sup>+</sup><br>channels in rat cerebral artery smooth muscle. American Journal of Physiology - Cell Physiology,<br>2001, 281, C1769-C1775.        | 2.1  | 186       |
| 16 | Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. Journal of Physiology, 1997,<br>502, 259-264.                                                                                                            | 1.3  | 169       |
| 17 | Calcium Signaling in Smooth Muscle. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004549-a004549.                                                                                                                          | 2.3  | 155       |
| 18 | AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Science Signaling, 2014, 7, ra66.                                                            | 1.6  | 151       |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Regulation of urinary bladder smooth muscle contractions by ryanodine receptors and BK and SK<br>channels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000,<br>279, R60-R68.                                               | 0.9 | 140       |
| 20 | Voltage dependence of Ca <sup>2+</sup> sparks in intact cerebral arteries. American Journal of<br>Physiology - Cell Physiology, 1998, 274, C1755-C1761.                                                                                                             | 2.1 | 138       |
| 21 | Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. Journal of<br>Physiology, 1999, 515, 639-651.                                                                                                                            | 1.3 | 135       |
| 22 | Contractile pericytes determine the direction of blood flow at capillary junctions. Proceedings of the United States of America, 2020, 117, 27022-27033.                                                                                                            | 3.3 | 127       |
| 23 | Swellingâ€activated cation channels mediate depolarization of rat cerebrovascular smooth muscle by hyposmolarity and intravascular pressure. Journal of Physiology, 2000, 527, 139-148.                                                                             | 1.3 | 119       |
| 24 | Activators of protein kinase C decrease Ca <sup>2+</sup> spark frequency in smooth muscle cells from cerebral arteries. American Journal of Physiology - Cell Physiology, 1997, 273, C2090-C2095.                                                                   | 2.1 | 116       |
| 25 | Differential regulation of Ca <sup>2+</sup> sparks and Ca <sup>2+</sup> waves by UTP in rat cerebral artery smooth muscle cells. American Journal of Physiology - Cell Physiology, 2000, 279, C1528-C1539.                                                          | 2.1 | 116       |
| 26 | Increased Myogenic Tone and Diminished Responsiveness to ATP-Sensitive K <sup>+</sup> Channel<br>Openers in Cerebral Arteries From Diabetic Rats. Circulation Research, 1997, 81, 996-1004.                                                                         | 2.0 | 114       |
| 27 | Vascular Inward Rectifier K <sup>+</sup> Channels as External K <sup>+</sup> Sensors in the Control of Cerebral Blood Flow. Microcirculation, 2015, 22, 183-196.                                                                                                    | 1.0 | 113       |
| 28 | Urinary bladder instability induced by selective suppression of the murine small conductance calcium-activated potassium (SK3) channel. Journal of Physiology, 2003, 551, 893-903.                                                                                  | 1.3 | 112       |
| 29 | Ion channel networks in the control of cerebral blood flow. Journal of Cerebral Blood Flow and<br>Metabolism, 2016, 36, 492-512.                                                                                                                                    | 2.4 | 108       |
| 30 | Differential regulation of SK and BK channels by Ca2+signals from Ca2+channels and ryanodine<br>receptors in guineaâ€pig urinary bladder myocytes. Journal of Physiology, 2002, 541, 483-492.                                                                       | 1.3 | 106       |
| 31 | The K <sup>+</sup> channel K <sub>IR</sub> 2.1 functions in tandem with proton influx to mediate sour taste transduction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E229-38.                                      | 3.3 | 105       |
| 32 | PIP2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. ELife, 2018,<br>7, .                                                                                                                                                     | 2.8 | 104       |
| 33 | Ontogeny of Local Sarcoplasmic Reticulum Ca 2+ Signals in Cerebral Arteries. Circulation Research, 1998, 83, 1104-1114.                                                                                                                                             | 2.0 | 103       |
| 34 | A PLCÎ <sup>3</sup> 1-Dependent, Force-Sensitive Signaling Network in the Myogenic Constriction of Cerebral<br>Arteries. Science Signaling, 2014, 7, ra49.                                                                                                          | 1.6 | 100       |
| 35 | Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca<br><sup>2+</sup> -activated K <sup>+</sup> (BK) channels. Proceedings of the National Academy of<br>Sciences of the United States of America, 2012, 109, <u>E1387-95.</u> | 3.3 | 97        |
| 36 | Inward rectifier potassium (Kir2.1) channels as endâ€stage boosters of endotheliumâ€dependent vasodilators. Journal of Physiology, 2016, 594, 3271-3285.                                                                                                            | 1.3 | 97        |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Voltage dependence of the coupling of Ca <sup>2+</sup> sparks to BK <sub>Ca</sub> channels in<br>urinary bladder smooth muscle. American Journal of Physiology - Cell Physiology, 2001, 280,<br>C481-C490.                                                                      | 2.1 | 94        |
| 38 | Acidosis Dilates Brain Parenchymal Arterioles by Conversion of Calcium Waves to Sparks to Activate<br>BK Channels. Circulation Research, 2012, 110, 285-294.                                                                                                                    | 2.0 | 93        |
| 39 | Intracellular calcium events activated by ATP in murine colonic myocytes. American Journal of<br>Physiology - Cell Physiology, 2000, 279, C126-C135.                                                                                                                            | 2.1 | 91        |
| 40 | Role of phospholamban in the modulation of arterial Ca <sup>2+</sup> sparks and<br>Ca <sup>2+</sup> -activated K <sup>+</sup> channels by cAMP. American Journal of Physiology - Cell<br>Physiology, 2001, 281, C1029-C1037.                                                    | 2.1 | 89        |
| 41 | Potassium channelopathy-like defect underlies early-stage cerebrovascular dysfunction in a genetic<br>model of small vessel disease. Proceedings of the National Academy of Sciences of the United States<br>of America, 2015, 112, E796-805.                                   | 3.3 | 77        |
| 42 | Reducing <scp>T</scp> imp3 or vitronectin ameliorates disease manifestations in <scp>CADASIL</scp><br>mice. Annals of Neurology, 2016, 79, 387-403.                                                                                                                             | 2.8 | 74        |
| 43 | Vascular TRP Channels: Performing Under Pressure and Going with the Flow. Physiology, 2014, 29, 343-360.                                                                                                                                                                        | 1.6 | 71        |
| 44 | Gender differences in coronary artery diameter reflect changes in both endothelial<br>Ca <sup>2+</sup> and ecNOS activity. American Journal of Physiology - Heart and Circulatory<br>Physiology, 1999, 276, H961-H969.                                                          | 1.5 | 70        |
| 45 | Low levels of K <sub>ATP</sub> channel activation decrease excitability and contractility of urinary<br>bladder. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001,<br>280, R1427-R1433.                                                 | 0.9 | 69        |
| 46 | Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of<br>cerebrovascular inwardly rectifying K <sup>+</sup> channel function. Proceedings of the National<br>Academy of Sciences of the United States of America, 2014, 111, 7462-7467. | 3.3 | 69        |
| 47 | Endothelial GqPCR activity controls capillary electrical signaling and brain blood flow through PIP<br><sub>2</sub> depletion. Proceedings of the National Academy of Sciences of the United States of<br>America, 2018, 115, E3569-E3577.                                      | 3.3 | 67        |
| 48 | Dysfunction of Mouse Cerebral Arteries during Early Aging. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1445-1453.                                                                                                                                                  | 2.4 | 66        |
| 49 | Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through<br>Arginase-1–Dependent Uncoupling of Endothelial Nitric Oxide Synthase. Journal of Neurotrauma, 2017,<br>34, 192-203.                                                           | 1.7 | 66        |
| 50 | Properties and molecular basis of the mouse urinary bladder voltageâ€gated K + current. Journal of<br>Physiology, 2003, 549, 65-74.                                                                                                                                             | 1.3 | 65        |
| 51 | TRPV4 and KRAS and FGFR1 gain-of-function mutations drive giant cell lesions of the jaw. Nature Communications, 2018, 9, 4572.                                                                                                                                                  | 5.8 | 58        |
| 52 | Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling. Journal of General Physiology, 2016, 147, 323-335.                                                                                                               | 0.9 | 56        |
| 53 | Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics. ELife, 2016, 5, .                                                                                                                                        | 2.8 | 55        |
| 54 | Pharmacological inhibitors of TRPV4 channels reduce cytokine production, restore endothelial function and increase survival in septic mice. Scientific Reports, 2016, 6, 33841.                                                                                                 | 1.6 | 52        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Piezo1 Is a Mechanosensor Channel in Central Nervous System Capillaries. Circulation Research, 2022,<br>130, 1531-1546.                                                                                                                                          | 2.0 | 48        |
| 56 | Local IP <sub>3</sub> receptor–mediated Ca <sup>2+</sup> signals compound to direct blood flow in brain capillaries. Science Advances, 2021, 7, .                                                                                                                | 4.7 | 46        |
| 57 | Nerveâ€evoked purinergic signalling suppresses action potentials, Ca <sup>2+</sup> flashes and contractility evoked by muscarinic receptor activation in mouse urinary bladder smooth muscle. Journal of Physiology, 2009, 587, 5275-5288.                       | 1.3 | 45        |
| 58 | PIP <sub>2</sub> corrects cerebral blood flow deficits in small vessel disease by rescuing capillary<br>Kir2.1 activity. Proceedings of the National Academy of Sciences of the United States of America, 2021,<br>118, .                                        | 3.3 | 45        |
| 59 | ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proceedings of the United States of America, 2020, 117, 7461-7470.                                                                                                         | 3.3 | 44        |
| 60 | The capillary Kir channel as sensor and amplifier of neuronal signals: Modeling insights on K<br><sup>+</sup> -mediated neurovascular communication. Proceedings of the National Academy of<br>Sciences of the United States of America, 2020, 117, 16626-16637. | 3.3 | 44        |
| 61 | PIP <sub>2</sub> : A critical regulator of vascular ion channels hiding in plain sight. Proceedings of the United States of America, 2020, 117, 20378-20389.                                                                                                     | 3.3 | 43        |
| 62 | Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe. ELife, 2017, 6, .                                                                                                                           | 2.8 | 42        |
| 63 | Reducing Hypermuscularization of the Transitional Segment Between Arterioles and Capillaries<br>Protects Against Spontaneous Intracerebral Hemorrhage. Circulation, 2020, 141, 2078-2094.                                                                        | 1.6 | 41        |
| 64 | PIP2 Improves Cerebral Blood Flow in a Mouse Model of Alzheimer's Disease. Function, 2021, 2, zqab010.                                                                                                                                                           | 1.1 | 40        |
| 65 | The β1 subunit of the Ca2+-sensitive K+ channel protects against hypertension. Journal of Clinical Investigation, 2004, 113, 955-957.                                                                                                                            | 3.9 | 39        |
| 66 | Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R629-R638.                              | 0.9 | 38        |
| 67 | Pressure-induced oxidative activation of PKG enables vasoregulation by Ca <sup>2+</sup> sparks and<br>BK channels. Science Signaling, 2016, 9, ra100.                                                                                                            | 1.6 | 35        |
| 68 | Social stress induces changes in urinary bladder function, bladder NGF content, and generalized<br>bladder inflammation in mice. American Journal of Physiology - Regulatory Integrative and<br>Comparative Physiology, 2014, 307, R893-R900.                    | 0.9 | 34        |
| 69 | Adenosine signaling activates ATP-sensitive K <sup>+</sup> channels in endothelial cells and pericytes in CNS capillaries. Science Signaling, 2022, 15, eabl5405.                                                                                                | 1.6 | 33        |
| 70 | Bayliss, myogenic tone and volume-regulated chloride channels in arterial smooth muscle. Journal of<br>Physiology, 1998, 507, 629-629.                                                                                                                           | 1.3 | 31        |
| 71 | Oxidation of cysteine 117 stimulates constitutive activation of the type lα cGMP-dependent protein kinase. Journal of Biological Chemistry, 2018, 293, 16791-16802.                                                                                              | 1.6 | 30        |
| 72 | NS19504: A Novel BK Channel Activator with Relaxing Effect on Bladder Smooth Muscle Spontaneous<br>Phasic Contractions. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 520-530.                                                               | 1.3 | 29        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Differential restoration of functional hyperemia by antihypertensive drug classes in<br>hypertension-related cerebral small vessel disease. Journal of Clinical Investigation, 2021, 131, .                                                    | 3.9 | 27        |
| 74 | Disruption of Pressure-Induced Ca <sup>2+</sup> Spark Vasoregulation of Resistance Arteries, Rather<br>Than Endothelial Dysfunction, Underlies Obesity-Related Hypertension. Hypertension, 2020, 75, 539-548.                                  | 1.3 | 26        |
| 75 | Actions of histamine on muscle and ganglia of the guinea pig gallbladder. American Journal of<br>Physiology - Renal Physiology, 2000, 279, G622-G630.                                                                                          | 1.6 | 25        |
| 76 | Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nature Communications, 2021, 12, 3296.                                                                                                                  | 5.8 | 25        |
| 77 | Potassium Ions as Vasodilators: Role of Inward Rectifier Potassium Channels. Circulation Research, 2001, 88, 132-133.                                                                                                                          | 2.0 | 24        |
| 78 | Vascular control of the CO2/H+-dependent drive to breathe. ELife, 2020, 9, .                                                                                                                                                                   | 2.8 | 23        |
| 79 | Uncoupling of neurovascular communication after transient global cerebral ischemia is caused by<br>impaired parenchymal smooth muscle K <sub>ir</sub> channel function. Journal of Cerebral Blood<br>Flow and Metabolism, 2016, 36, 1195-1201. | 2.4 | 22        |
| 80 | A Non-Anesthetized Mouse Model for Recording Sensory Urinary Bladder Activity. Frontiers in Neurology, 2010, 1, 127.                                                                                                                           | 1.1 | 20        |
| 81 | Gain-of-function mutation in <i>TRPV4</i> identified in patients with osteonecrosis of the femoral head. Journal of Medical Genetics, 2016, 53, 705-709.                                                                                       | 1.5 | 20        |
| 82 | Purinergic signalling underlies transforming growth factorâ€Î²â€mediated bladder afferent nerve<br>hyperexcitability. Journal of Physiology, 2016, 594, 3575-3588.                                                                             | 1.3 | 17        |
| 83 | Zeneca ZD6169 Activates ATP-Sensitive K <sup>+</sup> Channels in the Urinary Bladder of the Guinea<br>Pig. Pharmacology, 1996, 53, 170-179.                                                                                                    | 0.9 | 16        |
| 84 | Rhythmic Calcium Events in the Lamina Propria Network of the Urinary Bladder of Rat Pups. Frontiers<br>in Systems Neuroscience, 2017, 11, 87.                                                                                                  | 1.2 | 16        |
| 85 | The yin and yang of <i>K</i> <sub>V</sub> channels in cerebral small vessel pathologies.<br>Microcirculation, 2018, 25, e12436.                                                                                                                | 1.0 | 15        |
| 86 | Impaired capillary-to-arteriolar electrical signaling after traumatic brain injury. Journal of Cerebral<br>Blood Flow and Metabolism, 2021, 41, 1313-1327.                                                                                     | 2.4 | 15        |
| 87 | Functionally linked potassium channel activity in cerebral endothelial and smooth muscle cells is<br>compromised in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United<br>States of America, 2022, 119, .      | 3.3 | 15        |
| 88 | Inhibition of vascular smooth muscle inward-rectifier K <sup>+</sup> channels restores myogenic<br>tone in mouse urinary bladder arterioles. American Journal of Physiology - Renal Physiology, 2017, 312,<br>F836-F847.                       | 1.3 | 13        |
| 89 | TRPV4 blockade reduces voiding frequency, ATP release, and pelvic sensitivity in mice with chronic<br>urothelial overexpression of NGF. American Journal of Physiology - Renal Physiology, 2019, 317,<br>F1695-F1706.                          | 1.3 | 13        |
| 90 | The K V 7 channel activator retigabine suppresses mouse urinary bladder afferent nerve activity<br>without affecting detrusor smooth muscle K + channel currents. Journal of Physiology, 2019, 597,<br>935-950.                                | 1.3 | 13        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Lack of direct effect of adiponectin on vascular smooth muscle cell BKCa channels or Ca2+ signaling in the regulation of small artery pressure-induced constriction. Physiological Reports, 2017, 5, e13337.    | 0.7 | 12        |
| 92  | Spinning Disk Confocal Microscopy of Calcium Signalling in Blood Vessel Walls. Microscopy and Analysis, 2010, 24, 5-8.                                                                                          | 1.0 | 10        |
| 93  | The Role of PIEZO1 in Urinary Bladder Function and Dysfunction in a Rodent Model of Cyclophosphamide-Induced Cystitis. Frontiers in Pain Research, 2021, 2, 748385.                                             | 0.9 | 7         |
| 94  | Sarcoplasmic Reticulum and Membrane Currents. Novartis Foundation Symposium, 2008, , 189-207.                                                                                                                   | 1.2 | 6         |
| 95  | Transient receptor potential vanilloidâ€4 channels are involved in diminished myogenic tone in brain parenchymal arterioles in response to chronic hypoperfusion in mice. Acta Physiologica, 2019, 225, e13181. | 1.8 | 6         |
| 96  | A Case for Myoendothelial Gap Junctions. Circulation Research, 2000, 87, 427-428.                                                                                                                               | 2.0 | 5         |
| 97  | Location, Location, Location: Juxtaposed calcium-signaling microdomains as a novel model of the vascular smooth muscle myogenic response. Journal of General Physiology, 2015, 146, 129-132.                    | 0.9 | 5         |
| 98  | Impaired Cerebral Autoregulation After Subarachnoid Hemorrhage: A Quantitative Assessment Using a<br>Mouse Model. Frontiers in Physiology, 2021, 12, 688468.                                                    | 1.3 | 5         |
| 99  | CADASIL mutations sensitize the brain to ischemia via spreading depolarizations and abnormal extracellular potassium homeostasis. Journal of Clinical Investigation, 2022, 132, .                               | 3.9 | 5         |
| 100 | Genetic ablation of smooth muscle K <sub>IR</sub> 2.1 is inconsequential to the function of mouse cerebral arteries. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1693-1706.                        | 2.4 | 5         |
| 101 | Piezo1 is a mechanosensor channel in CNS capillaries. Journal of General Physiology, 2022, 154, .                                                                                                               | 0.9 | 4         |
| 102 | Functional evidence of TRPV4â€mediated Ca 2+ signals in cortical astrocytes. FASEB Journal, 2011, 25, 1024.23.                                                                                                  | 0.2 | 1         |
| 103 | Orchestrating Ca2+ influx through CaV1.2 and CaV3.x channels in human cerebral arteries. Journal of<br>General Physiology, 2015, 145, 481-483.                                                                  | 0.9 | 0         |
| 104 | "A Step and a Ceiling― mechanical properties of Ca <sup>2+</sup> spark vasoregulation in resistance<br>arteries by pressureâ€induced oxidative activation of PKG. Physiological Reports, 2019, 7, e14260.       | 0.7 | 0         |
| 105 | TRPA1 channel: New kid in the â€~neurovascular coupling' town. Cell Calcium, 2021, 96, 102407.                                                                                                                  | 1.1 | 0         |
| 106 | SK channels are involved in the stimulation of intracellular Ca 2+ signals by reactive oxygen species (ROS) in intact endothelium. FASEB Journal, 2006, 20, A1164.                                              | 0.2 | 0         |
| 107 | Basal and AChâ€stimulated intracellular Ca <sup>2+</sup> signals in intact endothelium originate from<br>IP <sub>3</sub> â€sensitive stores. FASEB Journal, 2007, 21, A861.                                     | 0.2 | 0         |
| 108 | Ca 2+ pulsars: spatially restricted, IP 3 Râ€mediated Ca 2+ release important for endothelial function.<br>FASEB Journal, 2008, 22, 1181.18.                                                                    | 0.2 | 0         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Decreased frequency of transient outward BK currents in cerebral myocytes following subarachnoid hemorrhage. FASEB Journal, 2008, 22, 965.18.                                                                      | 0.2 | 0         |
| 110 | Nerveâ€induced smooth muscle to endothelium signaling in small resistance arteries. FASEB Journal, 2010, 24, 598.7.                                                                                                | 0.2 | 0         |
| 111 | High intravascular pressure decreases endothelial Ca 2+ pulsars and impairs endotheliumâ€dependent<br>vasodilation in mouse mesenteric arteries. FASEB Journal, 2010, 24, 956.6.                                   | 0.2 | 0         |
| 112 | Role of ryanodine receptors in acidic pHâ€induced dilation of brain parenchymal arterioles. FASEB<br>Journal, 2011, 25, 1024.15.                                                                                   | 0.2 | 0         |
| 113 | Elementary TRPV4 Ca <sup>2+</sup> events in intact vascular endothelium. FASEB Journal, 2011, 25, 1082.1.                                                                                                          | 0.2 | 0         |
| 114 | Fundamental Change in Neurovascular Coupling after Subarachnoid Hemorrhage. FASEB Journal, 2011, 25, 1021.9.                                                                                                       | 0.2 | 0         |
| 115 | Profound decrease in myogenic tone of parenchymal arterioles in a genetic model of cerebral ischemic small vessel disease. FASEB Journal, 2012, 26, 685.6.                                                         | 0.2 | 0         |
| 116 | Prostaglandin E 2 , a postulated astrocyteâ€derived neurovascular coupling agent, constricts rather than dilates parenchymal arterioles. FASEB Journal, 2013, 27, .                                                | 0.2 | 0         |
| 117 | Critical role of Kv channels in cerebrovascular dysfunction associated with ischemic small vessel disease in a mouse genetic model. FASEB Journal, 2013, 27, 925.7.                                                | 0.2 | 0         |
| 118 | Loss of parenchymal arteriolar dilation to K + contributes to impaired neurovascular coupling in chronic angiotensin II hypertension. FASEB Journal, 2013, 27, 1186.8.                                             | 0.2 | 0         |
| 119 | Impairment of Neurovascular Coupling by Chronic Stress. FASEB Journal, 2013, 27, 925.9.                                                                                                                            | 0.2 | 0         |
| 120 | Calciumâ€sensitive potassium channels are not involved in the decreased myogenic tone of posterior cerebral arteries in a genetic model of cerebral ischemic small vessel disease. FASEB Journal, 2013, 27, lb671. | 0.2 | 0         |
| 121 | CEREBRAL VASCULAR DYSFUNCTION FOLLOWING TRAUMATIC BRAIN INJURY. FASEB Journal, 2013, 27, 875.6.                                                                                                                    | 0.2 | 0         |
| 122 | Increased endothelial calcium signals in cerebral vessels following traumatic brain injury. FASEB<br>Journal, 2013, 27, 875.9.                                                                                     | 0.2 | 0         |
| 123 | In vivo and ex vivo dysfunction of neurovascular coupling in a mouse model of subarachnoid hemorrhage (676.3). FASEB Journal, 2014, 28, 676.3.                                                                     | 0.2 | 0         |
| 124 | Disruption Of Astrocytic Calcium Signaling During Neurovascular Coupling In A Genetic Model Of<br>Small Vessel Disease. FASEB Journal, 2015, 29, 832.6.                                                            | 0.2 | 0         |
| 125 | Ca 2+ Dynamics and Contraction of Junctional Pericytes in the Retinal Vasculature. FASEB Journal, 2015, 29, 790.1.                                                                                                 | 0.2 | 0         |
| 126 | Afferent Activity is Greatly Increased by Spontaneous Phasic Contractions in Mouse Ex Vivo Urinary<br>Bladder. FASEB Journal, 2015, 29, .                                                                          | 0.2 | 0         |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Junctional Pericytes Serve as Directional Control Elements in K + â€mediated Functional Hyperemia.<br>FASEB Journal, 2018, 32, 843.23.                                    | 0.2 | 0         |
| 128 | Knockout of Vascular Smooth Muscle Inwardâ€Rectifier K + Channels Causes Symptoms of Overactive<br>Bladder in Mice. FASEB Journal, 2018, 32, 770.3.                       | 0.2 | 0         |
| 129 | An In Situ Kidney Slice Model for Studying Angiotensin Il―and TRPC5â€Mediated Calcium Signaling. FASEB<br>Journal, 2018, 32, 721.2.                                       | 0.2 | 0         |
| 130 | Enhanced vascular contractility following secondhand smoke exposure: a pathological â€~double-hit'<br>to critical smooth muscle ion channels. Function, 2022, 3, zqab061. | 1.1 | 0         |