Yukako Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5558163/publications.pdf

Version: 2024-02-01

257450 276875 1,748 50 24 41 citations h-index g-index papers 51 51 51 1437 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Feasibility of microneedles for percutaneous absorption of insulin. European Journal of Pharmaceutical Sciences, 2006, 29, 82-88.	4.0	199
2	Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials, 2005, 26, 7154-7163.	11.4	175
3	Two-Layered Dissolving Microneedles for Percutaneous Delivery of Peptide/Protein Drugs in Rats. Pharmaceutical Research, 2011, 28, 7-21.	3.5	142
4	Self-dissolving microneedles for the percutaneous absorption of EPO in mice. Journal of Drug Targeting, 2006, 14, 255-261.	4.4	134
5	Oral solid gentamicin preparation using emulsifier and adsorbent. Journal of Controlled Release, 2005, 105, 23-31.	9.9	102
6	Two-layered dissolving microneedles formulated with intermediate-acting insulin. International Journal of Pharmaceutics, 2012, 436, 387-393.	5.2	79
7	Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats. International Journal of Pharmaceutics, 2008, 349, 124-129.	5.2	60
8	Effect of adsorbents on the absorption of lansoprazole with surfactant. International Journal of Pharmaceutics, 2005, 289, 69-77.	5.2	57
9	Antigen-loaded dissolving microneedle array as a novel tool for percutaneous vaccination. Vaccine, 2012, 30, 1191-1197.	3.8	55
10	Incidence of low bioavailability of leuprolide acetate after percutaneous administration to rats by dissolving microneedles. International Journal of Pharmaceutics, 2011, 407, 126-131.	5.2	51
11	Preparation and evaluation of oral solid heparin using emulsifier and adsorbent for in vitro and in vivo studies. International Journal of Pharmaceutics, 2006, 317, 114-119.	5.2	46
12	Two-layered dissolving microneedles for percutaneous delivery of sumatriptan in rats. Drug Development and Industrial Pharmacy, 2011, 37, 1387-1393.	2.0	44
13	Therapeutic Drug Monitoring of Vancomycin in Dermal Interstitial Fluid Using Dissolving Microneedles. International Journal of Medical Sciences, 2016, 13, 271-276.	2.5	43
14	Pharmacokinetic and Pharmacodynamic Evaluation of Insulin Dissolving Microneedles in Dogs. Diabetes Technology and Therapeutics, 2010, 12, 465-474.	4.4	37
15	Transdermal Insulin Application System with Dissolving Microneedles. Diabetes Technology and Therapeutics, 2012, 14, 891-899.	4.4	37
16	Self-Dissolving Micropiles for the Percutaneous Absorption of Recombinant Human Growth Hormone in Rats. Biological and Pharmaceutical Bulletin, 2008, 31, 1631-1633.	1.4	33
17	Percutaneous absorption of interferon- \hat{l}_{\pm} by self-dissolving micropiles. Journal of Drug Targeting, 2008, 16, 243-249.	4.4	32
18	Self-dissolving micropile array tips for percutaneous administration of insulin. Journal of Materials Science: Materials in Medicine, 2010, 21, 835-841.	3.6	32

#	Article	IF	Citations
19	Self-Dissolving Micropile Array Chip as Percutaneous Delivery System of Protein Drug. Biological and Pharmaceutical Bulletin, 2010, 33, 683-690.	1.4	30
20	Antihyperglycemic Effect of Insulin from Self-Dissolving Micropiles in Dogs. Chemical and Pharmaceutical Bulletin, 2008, 56, 243-246.	1.3	28
21	Effect of Lipophilicity on the Bioavailability of Drugs After Percutaneous Administration by Dissolving Microneedles. Journal of Pharmaceutical Sciences, 2012, 101, 1145-1156.	3.3	28
22	Sustained-release self-dissolving micropiles for percutaneous absorption of insulin in mice. Journal of Drug Targeting, 2007, 15, 323-326.	4.4	27
23	Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. International Journal of Pharmaceutics, 2007, 337, 357-360.	5.2	25
24	Dissolving microneedles to obtain rapid local anesthetic effect of lidocaine at skin tissue. Journal of Drug Targeting, 2013, 21, 770-775.	4.4	24
25	Application of Dissolving Microneedles to Glucose Monitoring through Dermal Interstitial Fluid. Biological and Pharmaceutical Bulletin, 2014, 37, 1776-1781.	1.4	19
26	Absorption of interferon alpha from patches in rats. Journal of Drug Targeting, 2005, 13, 383-390.	4.4	18
27	Molecular weight dependence on bioavailability of FITC-dextran after administration of self-dissolving micropile to rat skin. Drug Development and Industrial Pharmacy, 2010, 36, 845-851.	2.0	14
28	Long-Term Pharmacokinetic Efficacy and Safety of Low-Dose Ritonavir as a Booster and Atazanavir Pharmaceutical Formulation Based on Solid Dispersion System in Rats. Biological and Pharmaceutical Bulletin, 2008, 31, 1209-1214.	1.4	13
29	Pre-therapeutic Assessment of Plasma Dihydrouracil/Uracil Ratio for Predicting the Pharmacokinetic Parameters of 5-Fluorouracil and Tumor Growth in a Rat Model of Colorectal Cancer. Biological and Pharmaceutical Bulletin, 2013, 36, 907-916.	1.4	13
30	Permeation Enhancement of Ascorbic Acid by Self-Dissolving Micropile Array Tip through Rat Skin. Chemical and Pharmaceutical Bulletin, 2010, 58, 458-463.	1.3	12
31	Pharmacokinetic/Pharmacodynamic Modeling of 5-Fluorouracil by Using a Biomarker to Predict Tumor Growth in a Rat Model of Colorectal Cancer. Journal of Pharmaceutical Sciences, 2013, 102, 2056-2067.	3.3	12
32	Three-layered microcapsules as a long-term sustained release injection preparation. International Journal of Pharmaceutics, 2010, 384, 53-59.	5.2	11
33	Method to Increase the Systemically Delivered Amount of Drug from Dissolving Microneedles. Chemical and Pharmaceutical Bulletin, 2013, 61, 8-15.	1.3	11
34	A predictive biomarker for altered 5â€fluorouracil pharmacokinetics following repeated administration in a rat model of colorectal cancer. Biopharmaceutics and Drug Disposition, 2013, 34, 365-376.	1.9	10
35	Pharmacokinetic–pharmacodynamic (PK–PD) modeling and simulation of 5-fluorouracil for erythropenia in rats. Journal of Pharmacological and Toxicological Methods, 2014, 70, 134-144.	0.7	10
36	Population pharmacokinetic modelling and simulation of 5-fluorouracil incorporating a circadian rhythm in rats. Xenobiotica, 2016, 46, 597-604.	1.1	10

3

#	Article	IF	CITATIONS
37	Population Pharmacokinetic–Pharmacodynamic Modeling of 5-Fluorouracil for Toxicities in Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2017, 42, 707-718.	1.6	9
38	Pharmacokinetic and toxicodynamic evaluation of oxaliplatin-induced neuropathy and hematological toxicity in rats. Cancer Chemotherapy and Pharmacology, 2018, 81, 155-161.	2.3	9
39	Semi-physiological pharmacokinetic–pharmacodynamic modeling and simulation of 5-fluorouracil for the whole time course of alterations in leukocyte, neutrophil and lymphocyte counts in rats. Xenobiotica, 2014, 44, 804-818.	1.1	8
40	Semi-physiological pharmacokinetic–pharmacodynamic (PK–PD) modeling and simulation of 5-fluorouracil for thrombocytopenia in rats. Xenobiotica, 2015, 45, 19-28.	1.1	8
41	Dissolving microneedles for enhanced local delivery of capsaicin to rat skin tissue. Journal of Drug Targeting, 2017, 25, 420-424.	4.4	7
42	Mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modeling and simulation of oxaliplatin for hematological toxicity in rats. Xenobiotica, 2020, 50, 146-153.	1.1	7
43	Two-and Three-Layered Dissolving Microneedles for Transcutaneous Delivery of Model Vaccine Antigen in Rats. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 325-334.	0.5	6
44	Assessment of Oxaliplatin-induced Chronic Neuropathy and Anticancer Efficacy Through Pharmacokinetic and Toxicodynamic Evaluation of a Rat Model of Colorectal Cancer. Anticancer Research, 2019, 39, 4207-4213.	1.1	5
45	Semi-Mechanism-Based Pharmacokinetic-Toxicodynamic Model of Oxaliplatin-Induced Acute and Chronic Neuropathy. Pharmaceutics, 2020, 12, 125.	4.5	5
46	A Physiologically Based Pharmacokinetic–Pharmacodynamic Model for Capecitabine in Colorectal Cancer Rats: Simulation of Antitumor Efficacy at Various Administration Schedules. European Journal of Drug Metabolism and Pharmacokinetics, 2021, 46, 301-315.	1.6	4
47	Effect of intact oxaliplatin in plasma on a cold allodynia after multiple administrations in colorectal cancer model rats. Annals of Palliative Medicine, 2020, 9, 3000-3006.	1.2	3
48	Cytology-based Detection of Circulating Tumour Cells in Human Pancreatic Cancer Xenograft Models With <i>KRAS</i> Mutation. Anticancer Research, 2020, 40, 6781-6789.	1.1	3
49	Population Pharmacokinetic Model-Based Evaluation of Intact Oxaliplatin in Rats with Acute Kidney Injury. Cancers, 2021, 13, 6382.	3.7	1
50	Insulin micropiles comprising biodegradable polymers for production of a long-term hypoglycemic effect. Journal of Drug Targeting, 2011, 19, 212-218.	4.4	O