Yu-Yo Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557985/publications.pdf Version: 2024-02-01

YU-YO SUN

#	Article	IF	CITATIONS
1	Monocytes promote acute neuroinflammation and become pathological microglia in neonatal hypoxic-ischemic brain injury. Theranostics, 2022, 12, 512-529.	4.6	24
2	Anti-Inflammatory CDGSH Iron-Sulfur Domain 2: A Biomarker of Central Nervous System Insult in Cellular, Animal Models and Patients. Biomedicines, 2022, 10, 777.	1.4	1
3	Applications of Theranostics for Detecting and Targeting CNS Injuries and Diseases. Behavioural Neurology, 2022, 2022, 1-2.	1.1	0
4	Stroke propensity in the Th3+/ mouse model of β-thalassemia intermedia. Neurobiology of Disease, 2022, , 105802.	2.1	1
5	Brain-targeted hypoxia-inducible factor stabilization reduces neonatal hypoxic-ischemic brain injury. Neurobiology of Disease, 2021, 148, 105200.	2.1	8
6	Poldip2 controls leukocyte infiltration into the ischemic brain by regulating focal adhesion kinase-mediated VCAM-1 induction. Scientific Reports, 2021, 11, 5533.	1.6	10
7	A Fibrin-Enriched and tPA-Sensitive Photothrombotic Stroke Model. Journal of Visualized Experiments, 2021, , .	0.2	5
8	A novel naphthalimide derivative reduces platelet activation and thrombus formation via suppressing GPVI. Journal of Cellular and Molecular Medicine, 2021, 25, 9434-9446.	1.6	5
9	Creatine transporter deficiency impairs stress adaptation and brain energetics homeostasis. JCI Insight, 2021, 6, .	2.3	10
10	Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nature Communications, 2021, 12, 5289.	5.8	131
11	Neurovascular protection by adropin in experimental ischemic stroke through an endothelial nitric oxide synthase-dependent mechanism. Redox Biology, 2021, 48, 102197.	3.9	17
12	Fate mapping via CCR2-CreER mice reveals monocyte-to-microglia transition in development and neonatal stroke. Science Advances, 2020, 6, eabb2119.	4.7	66
13	Monocytic Infiltrates Contribute to Autistic-like Behaviors in a Two-Hit Model of Neurodevelopmental Defects. Journal of Neuroscience, 2020, 40, 9386-9400.	1.7	23
14	A murine photothrombotic stroke model with an increased fibrin content and improved responses to tPA-lytic treatment. Blood Advances, 2020, 4, 1222-1231.	2.5	23
15	Protective Effects of CISD2 and Influence of Curcumin on CISD2 Expression in Aged Animals and Inflammatory Cell Model. Nutrients, 2019, 11, 700.	1.7	24
16	Abstract WMP75: A Modified, Recombinant Tissue Plasminogen Activator-Responding Photothrombotic Stroke Model. Stroke, 2019, 50, .	1.0	0
17	Polymerase delta-interacting protein 2 deficiency protects against blood-brain barrier permeability in the ischemic brain. Journal of Neuroinflammation, 2018, 15, 45.	3.1	23
18	Abstract TMP106: Humanized Sickle Mice Are Sensitive to Hypoxia-Ischemia-Induced Stroke, but Respond to Tissue Plasminogen Activator Treatment. Stroke, 2018, 49, .	1.0	0

Yu-Yo Sun

#	Article	IF	CITATIONS
19	Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta Neuropathologica, 2017, 134, 585-604.	3.9	82
20	Sickle Mice Are Sensitive to Hypoxia/Ischemia-Induced Stroke but Respond to Tissue-Type Plasminogen Activator Treatment. Stroke, 2017, 48, 3347-3355.	1.0	13
21	Osteopontin Is a Blood Biomarker for Microglial Activation and Brain Injury in Experimental Hypoxic-Ischemic Encephalopathy. ENeuro, 2017, 4, ENEURO.0253-16.2016.	0.9	28
22	Alteration of <scp>SLP</scp> 2â€like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain. European Journal of Neuroscience, 2016, 43, 245-257.	1.2	12
23	Astrocytic GAP43 Induced by the TLR4/NF-κB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. Journal of Neuroscience, 2016, 36, 2027-2043.	1.7	93
24	A Thrombotic Stroke Model Based On Transient Cerebral Hypoxia-ischemia. Journal of Visualized Experiments, 2015, , e52978.	0.2	5
25	Prophylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury. Stroke, 2015, 46, 1947-1955.	1.0	43
26	CISD2 serves a novel role as a suppressor of nitric oxide signalling and curcumin increases CISD2 expression in spinal cord injuries. Injury, 2015, 46, 2341-2350.	0.7	30
27	Aryl hydrocarbon receptor mediates both proinflammatory and antiâ€inflammatory effects in lipopolysaccharideâ€activated microglia. Glia, 2015, 63, 1138-1154.	2.5	68
28	Towards reperfusion-centric preclinical stroke research: outside the box of "reperfusion injury". Neural Regeneration Research, 2015, 10, 534.	1.6	1
29	Synergy of Combined tPA-Edaravone Therapy in Experimental Thrombotic Stroke. PLoS ONE, 2014, 9, e98807.	1.1	29
30	Blocking Lymphocyte Trafficking with FTY720 Prevents Inflammation-Sensitized Hypoxic–Ischemic Brain Injury in Newborns. Journal of Neuroscience, 2014, 34, 16467-16481.	1.7	69
31	Intranasal delivery of cell-penetrating anti-NF-κB peptides (Tat-NBD) alleviates infection-sensitized hypoxic–ischemic brain injury. Experimental Neurology, 2013, 247, 447-455.	2.0	53
32	Plasminogen Activator Inhibitor-1 Mitigates Brain Injury in a Rat Model of Infection-Sensitized Neonatal Hypoxia-Ischemia. Cerebral Cortex, 2013, 23, 1218-1229.	1.6	36
33	Taming Neonatal Hypoxic–Ischemic Brain Injury by Intranasal Delivery of Plasminogen Activator Inhibitor-1. Stroke, 2013, 44, 2623-2627.	1.0	17
34	Gsx2 controls region-specific activation of neural stem cells and injury-induced neurogenesis in the adult subventricular zone. Genes and Development, 2013, 27, 1272-1287.	2.7	84
35	Overexpression of Vascular Endothelial Growth Factor in the Germinal Matrix Induces Neurovascular Proteases and Intraventricular Hemorrhage. Science Translational Medicine, 2013, 5, 193ra90.	5.8	38
36	Cell Type-Specific Dependency on the PI3K/Akt Signaling Pathway for the Endogenous Epo and VEGF Induction by Baicalein in Neurons versus Astrocytes. PLoS ONE, 2013, 8, e69019.	1.1	17

Yu-Yo Sun

#	Article	IF	CITATIONS
37	Mannitol-facilitated perfusion staining with 2,3,5-triphenyltetrazolium chloride (TTC) for detection of experimental cerebral infarction and biochemical analysis. Journal of Neuroscience Methods, 2012, 203, 122-129.	1.3	26
38	Curcumin Attenuates the Expression and Secretion of RANTES after Spinal Cord Injury <i>In Vivo</i> and Lipopolysaccharide-Induced Astrocyte Reactivation <i>In Vitro</i> . Journal of Neurotrauma, 2011, 28, 1259-1269.	1.7	54
39	Curcumin enhances neuronal survival in N-methyl-d-aspartic acid toxicity by inducing RANTES expression in astrocytes via PI-3K and MAPK signaling pathways. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 931-938.	2.5	41
40	Glucocorticoid Protection of Oligodendrocytes against Excitotoxin Involving Hypoxia-Inducible Factor-1Â in a Cell-Type-Specific Manner. Journal of Neuroscience, 2010, 30, 9621-9630.	1.7	29
41	Methylprednisolone inhibits the expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycans in reactivated astrocytes. Clia, 2008, 56, 1390-1400.	2.5	43
42	Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. Journal of Neurochemistry, 2008, 104, 1415-1429.	2.1	61
43	Bcl-2 Gene Family Expression in the Brain of Rat Offspring after Gestational and Lactational Dioxin Exposure, Appals of the New York Academy of Sciences, 2005, 1042, 471-480	1.8	12