Andrew Sih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personality, spatiotemporal ecological variation and resident/explorer movement syndromes in the sleepy lizard. Journal of Animal Ecology, 2022, 91, 210-223.	2.8	10
2	Behavioural correlations across multiple stages of the antipredator response: do animals that escape sooner hide longer?. Animal Behaviour, 2022, 185, 175-184.	1.9	17
3	Beyond spatial overlap: harnessing new technologies to resolve the complexities of predator–prey interactions. Oikos, 2022, 2022, .	2.7	36
4	Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biological Reviews, 2022, 97, 1346-1364.	10.4	46
5	Intrinsic traits, social context, and local environment shape home range size and fidelity of sleepy lizards. Ecological Monographs, 2022, 92, .	5.4	11
6	Host traits, identity, and ecological conditions predict consistent flea abundance and prevalence on free-living California ground squirrels. International Journal for Parasitology, 2021, 51, 587-598.	3.1	8
7	Task syndromes: linking personality and task allocation in social animal groups. Behavioral Ecology, 2021, 32, 1-17.	2.2	22
8	A Broader View on Mate Choice and Assortative Mating by Behavioral Type: A Reply to Dingemanse et al Trends in Ecology and Evolution, 2021, 36, 179-180.	8.7	0
9	Consistent after all: behavioural repeatability in a long-lived lizard across a 6-year field study. Animal Behaviour, 2021, 174, 263-277.	1.9	14
10	Stable social groups foster conformity and among-group differences. Animal Behaviour, 2021, 174, 197-206.	1.9	16
11	Early life experience influences dispersal in coyotes (<i>Canis latrans</i>). Behavioral Ecology, 2021, 32, 728-737.	2.2	11
12	Estimating encounter location distributions from animal tracking data. Methods in Ecology and Evolution, 2021, 12, 1158-1173.	5.2	21
13	Andrew Sih. Current Biology, 2021, 31, R934-R936.	3.9	0
14	Population differences in the effect of context on personality in an invasive lizard. Behavioral Ecology, 2021, 32, 1363-1371.	2.2	7
15	Personality, plasticity, tasks, and task syndromes: a response to comments on Loftus et al. 2020. Behavioral Ecology, 2021, 32, 23-24.	2.2	0
16	Mast seeding promotes evolution of scatter-hoarding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200375.	4.0	7
17	Enhancing the ecological realism of evolutionary mismatch theory. Trends in Ecology and Evolution, 2021, , .	8.7	10
18	A comparison of the establishment success, response to competition, and community impact of invasive and non-invasive Gambusia species. Biological Invasions, 2020, 22, 509-522.	2.4	5

#	Article	IF	CITATIONS
19	Transgenerational Plasticity in Human-Altered Environments. Trends in Ecology and Evolution, 2020, 35, 115-124.	8.7	105
20	Predator hunting modes and predator–prey space games. Ethology, 2020, 126, 476-485.	1.1	5
21	Sex-dependent personality in two invasive species of mosquitofish. Biological Invasions, 2020, 22, 1353-1364.	2.4	16
22	A closer look at invasiveness and relatedness: life histories, temperature, and establishment success of four congeners. Ecosphere, 2020, 11, e03222.	2.2	3
23	A framework and standardized terminology to facilitate the study of predationâ€risk effects. Ecology, 2020, 101, e03152.	3.2	52
24	Bugs scaring bugs: enemyâ€risk effects in biological control systems. Ecology Letters, 2020, 23, 1693-1714.	6.4	42
25	Leveraging Motivations, Personality, and Sensory Cues for Vertebrate Pest Management. Trends in Ecology and Evolution, 2020, 35, 990-1000.	8.7	39
26	Animal personalities and seed dispersal: A conceptual review. Functional Ecology, 2020, 34, 1294-1310.	3.6	39
27	Proportional fitness loss and the timing of defensive investment: a cohesive framework across animals and plants. Oecologia, 2020, 193, 273-283.	2.0	11
28	Consistent individual differences in ectoâ€parasitism of a longâ€lived lizard host. Oikos, 2020, 129, 1061-1071.	2.7	10
29	You're Just My Type: Mate Choice and Behavioral Types. Trends in Ecology and Evolution, 2020, 35, 823-833.	8.7	41
30	Occurrence of the introduced snake mite, Ophionyssus natricis (Gervais, 1844), in the wild in Australia. Acarologia, 2020, 60, 559-565.	0.6	7
31	On the importance of individual differences in behavioural skill. Animal Behaviour, 2019, 155, 307-317.	1.9	18
32	Male social plasticity influences transient dynamics in the emergence of alternative mating systems in water striders. Behavioral Ecology, 2019, 30, 1530-1538.	2.2	3
33	Opportunities for behavioral rescue under rapid environmental change. Global Change Biology, 2019, 25, 3110-3120.	9.5	53
34	Rapid environmental change in games: complications and counter-intuitive outcomes. Scientific Reports, 2019, 9, 7373.	3.3	1
35	Predicting evolutionarily stable strategies from functional responses of Sonoran Desert annuals to precipitation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182613	2.6	7
36	On using conceptual frameworks to guide a systematic review: a comment on Berger-Tal et al Behavioral Ecology, 2019, 30, 12-13.	2.2	1

#	Article	IF	CITATIONS
37	Prey Responses to Exotic Predators: Effects of Old Risks and New Cues. American Naturalist, 2019, 193, 575-587.	2.1	31
38	Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends in Ecology and Evolution, 2019, 34, 369-383.	8.7	143
39	Predicting Habitat Choice after Rapid Environmental Change. American Naturalist, 2019, 193, 619-632.	2.1	19
40	Environmentally relevant concentrations of bifenthrin affect the expression of estrogen and glucocorticoid receptors in brains of female western mosquitofish. Aquatic Toxicology, 2019, 209, 121-131.	4.0	10
41	Warming-induced shifts in amphibian phenology and behavior lead to altered predator–prey dynamics. Oecologia, 2019, 189, 803-813.	2.0	21
42	Diets of Largemouth Bass (Micropterus salmoides) in the Sacramento San Joaquin Delta. San Francisco Estuary and Watershed Science, 2019, 17, .	0.4	5
43	Challenges of Learning to Escape Evolutionary Traps. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	35
44	Intermediate turbidity elicits the greatest antipredator response and generates repeatable behaviour in mosquitofish. Animal Behaviour, 2019, 158, 101-108.	1.9	16
45	Personality-dependent survival of the invasive mosquitofish: being social can be deadly. Aquatic Invasions, 2019, 14, 465-477.	1.6	15
46	Phylogenetic patterns of trait and trait plasticity evolution: Insights from amphibian embryos. Evolution; International Journal of Organic Evolution, 2018, 72, 663-678.	2.3	16
47	Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nature Ecology and Evolution, 2018, 2, 944-955.	7.8	97
48	Male guppies compensate for lost time when mating in turbid water. Behavioral Ecology and Sociobiology, 2018, 72, 1.	1.4	15
49	Integrating social networks, animal personalities, movement ecology and parasites: a framework with examples from a lizard. Animal Behaviour, 2018, 136, 195-205.	1.9	59
50	Where should we meet? Mapping social network interactions of sleepy lizards shows sex-dependent social network structure. Animal Behaviour, 2018, 136, 207-215.	1.9	33
51	Fish-Habitat Relationships Along the Estuarine Gradient of the Sacramento-San Joaquin Delta, California: Implications for Habitat Restoration. Estuaries and Coasts, 2018, 41, 2389-2409.	2.2	19
52	Endure your parasites: Sleepy Lizard (<i>Tiliqua rugosa</i>) movement is not affected by their ectoparasites. Canadian Journal of Zoology, 2018, 96, 1309-1316.	1.0	10
53	Does sexual conflict increase juvenile survival by reducing cannibalism?. Behavioural Processes, 2018, 157, 438-444.	1.1	1
54	Juvenile rockfish show resilience to CO2-acidification and hypoxia across multiple biological scales. , 2018, 6, coy038.		14

#	Article	IF	CITATIONS
55	Social Information Links Individual Behavior to Population and Community Dynamics. Trends in Ecology and Evolution, 2018, 33, 535-548.	8.7	122
56	Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181297.	2.6	195
57	Predicting behavioural responses to novel organisms: state-dependent detection theory. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162108.	2.6	32
58	Behavioural responses to humanâ€induced change: Why fishing should not be ignored. Evolutionary Applications, 2017, 10, 231-240.	3.1	81
59	Effects of the group's mix of sizes and personalities on the emergence of alternative mating systems in water striders. Behavioral Ecology, 2017, 28, 1068-1074.	2.2	7
60	Altered physical and social conditions produce rapidly reversible mating systems in water striders. Behavioral Ecology, 2017, 28, 632-639.	2.2	10
61	Insights for behavioral ecology from behavioral syndromes: a comment on Beekman and Jordan. Behavioral Ecology, 2017, 28, 627-628.	2.2	6
62	Why Is Social Behavior Rare in Reptiles? Lessons From Sleepy Lizards. Advances in the Study of Behavior, 2017, 49, 1-26.	1.6	16
63	What's your move? Movement as a link between personality and spatial dynamics in animal populations. Ecology Letters, 2017, 20, 3-18.	6.4	287
64	The erroneous signals of detection theory. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171852.	2.6	27
65	Nonâ€random dispersal mediates invader impacts on the invertebrate community. Journal of Animal Ecology, 2017, 86, 1298-1307.	2.8	27
66	Spatiotemporal patterns of duck nest density and predation risk: a multiâ€scale analysis of 18 years and more than 10 000 nests. Oikos, 2017, 126, 332-338.	2.7	15
67	Correlational selection on personality and social plasticity: morphology and social context determine behavioural effects on mating success. Journal of Animal Ecology, 2017, 86, 213-226.	2.8	29
68	Parasitism, personality and cognition in fish. Behavioural Processes, 2017, 141, 205-219.	1.1	37
69	Socially interacting or indifferent neighbours? Randomization of movement paths to tease apart social preference and spatial constraints. Methods in Ecology and Evolution, 2016, 7, 971-979.	5.2	102
70	The Role of Dispersal Behaviour and Personality in Post-establishment Spread. , 2016, , 96-116.		9
71	Behavioural hypervolumes of spider communities predict community performance and disbandment. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161409.	2.6	14
72	Novel Species Interactions in a Highly Modified Estuary: Association of Largemouth Bass with Brazilian Waterweed <i>Egeria densa</i> . Transactions of the American Fisheries Society, 2016, 145, 249-263.	1.4	30

#	Article	IF	CITATIONS
73	Multiple mating reveals complex patterns of assortative mating by personality and body size. Journal of Animal Ecology, 2016, 85, 125-135.	2.8	35
74	A conceptual framework for understanding behavioral responses to HIREC. Current Opinion in Behavioral Sciences, 2016, 12, 109-114.	3.9	49
75	The relationship between handling time and cortisol release rates changes as a function of brain parasite densities in California killifish <i>Fundulus parvipinnis</i> . Journal of Fish Biology, 2016, 88, 1125-1142.	1.6	6
76	A comparison of plants and animals in their responses to risk of consumption. Current Opinion in Plant Biology, 2016, 32, 1-8.	7.1	22
77	Dealing with stochastic environmental variation in space and time: bet hedging by generalist, specialist, and diversified strategies. Theoretical Ecology, 2016, 9, 149-161.	1.0	23
78	Environment modulates population social structure: experimental evidence from replicated social networks of wild lizards. Animal Behaviour, 2016, 111, 23-31.	1.9	86
79	Commentary: Four ways in which data-free papers on animal personality fail to be impactful. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	4
80	Linking short-term behavior and personalities to feeding and mating rates in female water striders. Behavioral Ecology, 2015, 26, 1196-1202.	2.2	10
81	On connecting behavioral responses to HIREC to ecological outcomes: a comment on Wong and Candolin. Behavioral Ecology, 2015, 26, 676-677.	2.2	6
82	Effects of carbaryl on species interactions of the foothill yellow legged frog (Rana boylii) and the Pacific treefrog (Pseudacris regilla). Hydrobiologia, 2015, 746, 255-269.	2.0	5
83	Error management in plant allocation to herbivore defense. Trends in Ecology and Evolution, 2015, 30, 441-445.	8.7	51
84	Developmental plasticity in vision and behavior may help guppies overcome increased turbidity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 1125-1135.	1.6	61
85	When the going gets tough: behavioural type-dependent space use in the sleepy lizard changes as the season dries. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151768.	2.6	74
86	Animal personality and state–behaviour feedbacks: a review and guide for empiricists. Trends in Ecology and Evolution, 2015, 30, 50-60.	8.7	472
87	The contribution of additive genetic variation to personality variation: heritability of personality. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142201.	2.6	287
88	Personalities and presence of hyperaggressive males influence male mating exclusivity and effective mating in stream water striders. Behavioral Ecology and Sociobiology, 2015, 69, 27-37.	1.4	31
89	Dynamic feedbacks on dynamic networks: on the importance of considering real-time rewiringcomment on Pinter-Wollman et al Behavioral Ecology, 2014, 25, 258-259.	2.2	6
90	Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass. Environmental Biology of Fishes, 2014, 97, 79-90.	1.0	53

#	Article	IF	CITATIONS
91	The keystone individual concept: an ecological and evolutionary overview. Animal Behaviour, 2014, 89, 53-62.	1.9	174
92	Effects of behavioural type, social skill and the social environment on male mating success in water striders. Animal Behaviour, 2014, 94, 9-17.	1.9	56
93	Behavioural syndromes and social insects: personality at multiple levels. Biological Reviews, 2014, 89, 48-67.	10.4	268
94	Behavioural plasticity and evolution. Animal Behaviour, 2013, 85, 1003.	1.9	17
95	The response of a sleepy lizard social network to altered ecological conditions. Animal Behaviour, 2013, 86, 763-772.	1.9	37
96	Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Animal Behaviour, 2013, 85, 1077-1088.	1.9	422
97	Predicting novel herbivore–plant interactions. Oikos, 2013, 122, 1554-1564.	2.7	81
98	Ecological novelty and the emergence of evolutionary traps. Trends in Ecology and Evolution, 2013, 28, 552-560.	8.7	349
99	Personality-dependent dispersal cancelled under predation risk. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132349.	2.6	89
100	Multilevel selection and effects of keystone hyperaggressive males on mating success and behavior in stream water striders. Behavioral Ecology, 2013, 24, 1166-1176.	2.2	44
101	Frontiers on the Interface between Behavioral Syndromes and Social Behavioral Ecology. , 2013, , 221-251.		8
102	Quantified Analyses of Aggression Pattern in a Captive Population of Musk Deer (Moschus Sifanicus). Annals of Animal Science, 2012, 12, 413-421.	1.6	3
103	Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2762-2772.	4.0	536
104	Impacts of the Insecticide Diazinon on the Behavior of Predatory Fish and Amphibian Prey. Journal of Herpetology, 2012, 46, 171-176.	0.5	18
105	Temporal dynamics and network analysis. Methods in Ecology and Evolution, 2012, 3, 958-972.	5.2	194
106	Behavioral Types of Predator and Prey Jointly Determine Prey Survival: Potential Implications for the Maintenance of Within-Species Behavioral Variation. American Naturalist, 2012, 179, 217-227.	2.1	101
107	Lovers and fighters in sleepy lizard land: where do aggressive males fit in a social network?. Animal Behaviour, 2012, 83, 209-215.	1.9	43
108	Individual sociability and choosiness between shoal types. Animal Behaviour, 2012, 83, 1469-1476.	1.9	82

#	Article	IF	CITATIONS
109	Spatial scale influences the outcome of the predator–prey space race between tadpoles and predatory dragonflies. Functional Ecology, 2012, 26, 522-531.	3.6	13
110	Ecological implications of behavioural syndromes. Ecology Letters, 2012, 15, 278-289.	6.4	705
111	Effects of Ocean Acidification on Learning in Coral Reef Fishes. PLoS ONE, 2012, 7, e31478.	2.5	111
112	Social Personality Polymorphism and the Spread of Invasive Species: A Model. American Naturalist, 2011, 177, 273-287.	2.1	135
113	Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Global Change Biology, 2011, 17, 2980-2986.	9.5	161
114	Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. Journal of Fish Biology, 2011, 78, 395-435.	1.6	399
115	Evolutionary principles and their practical application. Evolutionary Applications, 2011, 4, 159-183.	3.1	230
116	Evolution and behavioural responses to humanâ€induced rapid environmental change. Evolutionary Applications, 2011, 4, 367-387.	3.1	892
117	Incorporating evolutionary principles into environmental management and policy. Evolutionary Applications, 2011, 4, 315-325.	3.1	80
118	Scale dependent effects of native prey diversity, prey biomass and natural disturbance on the invasion success of an exotic predator. Biological Invasions, 2011, 13, 1357-1366.	2.4	16
119	Integration of an invasive consumer into an estuarine food web: direct and indirect effects of the New Zealand mud snail. Oecologia, 2011, 167, 169-179.	2.0	18
120	Effects of early stress on behavioral syndromes: An integrated adaptive perspective. Neuroscience and Biobehavioral Reviews, 2011, 35, 1452-1465.	6.1	92
121	Personality-dependent dispersal in the invasive mosquitofish: group composition matters. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1670-1678.	2.6	147
122	Behavioral Syndromes: A Behavioral Ecologist's View on the Evolutionary and Ecological Implications of Animal Personalities. , 2011, , 313-336.		7
123	Predator-prey naÃ⁻veté, antipredator behavior, and the ecology of predator invasions. Oikos, 2010, 119, 610-621.	2.7	561
124	Coexistence in the intertidal: interactions between the non-indigenous New Zealand mud snail Potamopyrgus antipodarum and the native estuarine isopod Gnorimosphaeroma insulare. Oikos, 2010, 119, 1755-1764.	2.7	20
125	Personality traits and dispersal tendency in the invasive mosquitofish (<i>Gambusia affinis</i>). Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1571-1579.	2.6	382
126	Risk, resources and state-dependent adaptive behavioural syndromes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3977-3990.	4.0	325

#	Article	IF	CITATIONS
127	Behavior as a Key Component of Integrative Biology in a Human-altered World. Integrative and Comparative Biology, 2010, 50, 934-944.	2.0	103
128	Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 4065-4076.	4.0	502
129	Predator Effects in Predator-Free Space: the Remote Effects of Predators on Prey. Open Ecology Journal, 2010, 3, 22-30.	2.0	37
130	Behavioral correlations provide a mechanism for explaining high invader densities and increased impacts on native prey. Ecology, 2009, 90, 581-587.	3.2	91
131	Dragonfly larvae and tadpole frog space use games in varied light conditions. Behavioral Ecology, 2009, 20, 13-21.	2.2	20
132	Sexual conflict as a partitioning of selection. Biology Letters, 2009, 5, 675-677.	2.3	11
133	The positive effects of negative interactions: Can avoidance of competitors or predators increase resource sampling by prey?. Theoretical Population Biology, 2009, 76, 52-58.	1.1	13
134	The paradox of risk allocation: a review and prospectus. Animal Behaviour, 2009, 78, 579-585.	1.9	250
135	Differences in growth and foraging behavior of native and introduced populations of an invasive crayfish. Biological Invasions, 2009, 11, 1895-1902.	2.4	65
136	Social network theory: new insights and issues for behavioral ecologists. Behavioral Ecology and Sociobiology, 2009, 63, 975-988.	1.4	316
137	Behavioural type in newly emerged steelhead <i>Oncorhynchus mykiss</i> does not predict growth rate in a conventional hatchery rearing environment. Journal of Fish Biology, 2009, 75, 1410-1426.	1.6	19
138	Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos, 2008, 117, 1629-1636.	2.7	153
139	Chapter 5 Insights for Behavioral Ecology from Behavioral Syndromes. Advances in the Study of Behavior, 2008, 38, 227-281.	1.6	502
140	CONSUMPTIVE AND NONCONSUMPTIVE EFFECTS OF PREDATORS ON METACOMMUNITIES OF COMPETING PREY. Ecology, 2008, 89, 2426-2435.	3.2	83
141	Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos, 2008, , .	2.7	Ο
142	A framework for determining the fitness consequences of antipredator behavior. Behavioral Ecology, 2007, 18, 267-270.	2.2	17
143	PREDATOR AND PREY SPACE USE: DRAGONFLIES AND TADPOLES IN AN INTERACTIVE GAME. Ecology, 2007, 88, 1525-1535.	3.2	95
144	THE INFLUENCE OF INTRAGUILD PREDATION ON PREY SUPPRESSION AND PREY RELEASE: A META-ANALYSIS. Ecology, 2007, 88, 2689-2696.	3.2	192

#	Article	IF	CITATIONS
145	Evolution of animal personalities. Nature, 2007, 450, E5-E5.	27.8	57

Exposure to predation generates personality in threespined sticklebacks ($\langle i \rangle$ Gasterosteus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td 621

147	Fear, food, sex and parental care: a syndrome of boldness in the fishing spider, Dolomedes triton. Animal Behaviour, 2007, 74, 1131-1138.	1.9	155
148	Community ecology as a framework for predicting contaminant effects. Trends in Ecology and Evolution, 2006, 21, 606-613.	8.7	261
149	Use of Substitute Species in Conservation Biology. Conservation Biology, 2005, 19, 1821-1826.	4.7	62
150	Foraging behaviour and invasiveness: do invasiveGambusiaexhibit higher feeding rates and broader diets than their noninvasive relatives?. Ecology of Freshwater Fish, 2005, 14, 352-360.	1.4	87
151	Behavioral responses to a novel predator and competitor of invasive mosquitofish and their non-invasive relatives (Gambusia sp.). Behavioral Ecology and Sociobiology, 2005, 57, 256-266.	1.4	60
152	Precopulatory sexual cannibalism in fishing spiders (Dolomedes triton): a role for behavioral syndromes. Behavioral Ecology and Sociobiology, 2005, 58, 390-396.	1.4	259
153	Environmental Tolerance, Heterogeneity, and the Evolution of Reversible Plastic Responses. American Naturalist, 2005, 166, 339-353.	2.1	202
154	The mix matters: behavioural types and group dynamics in water striders. Behaviour, 2005, 142, 1417-1431.	0.8	276
155	LARVAL SALAMANDER RESPONSE TO UV RADIATION AND PREDATION RISK: COLOR CHANGE AND MICROHABITAT USE. , 2004, 14, 1055-1064.		40
156	MULTIPLE STRESSORS AND SALAMANDERS: EFFECTS OF AN HERBICIDE, FOOD LIMITATION, AND HYDROPERIOD. , 2004, 14, 1028-1040.		108
157	PREDATOR AND PREY HABITAT SELECTION GAMES: THE EFFECTS OF HOW PREY BALANCE FORAGING AND PREDATION RISK. Israel Journal of Zoology, 2004, 50, 233-254.	0.2	41
158	Dispersal Behavior, Boldness, and the Link to Invasiveness: A Comparison of Four Gambusia Species. Biological Invasions, 2004, 6, 379-391.	2.4	200
159	Behavioral Syndromes: An Integrative Overview. Quarterly Review of Biology, 2004, 79, 241-277.	0.1	1,627
160	Two stressors are far deadlier than one. Trends in Ecology and Evolution, 2004, 19, 274-276.	8.7	152
161	Behavioral syndromes: an ecological and evolutionary overview. Trends in Ecology and Evolution, 2004, 19, 372-378.	8.7	2,655
162	Response to Schmidt. Pesticides, mortality and population growth rate. Trends in Ecology and Evolution, 2004, 19, 460-461.	8.7	9

#	Article	IF	CITATIONS
163	Reply to Neff and Sherman. Behavioral syndromes versus darwinian algorithms. Trends in Ecology and Evolution, 2004, 19, 622-623.	8.7	12
164	Behavioural correlations across situations and the evolution of antipredator behaviour in a sunfish–salamander system. Animal Behaviour, 2003, 65, 29-44.	1.9	282
165	LETHAL AND SUBLETHAL EFFECTS OF ATRAZINE, CARBARYL, ENDOSULFAN, AND OCTYLPHENOL ON THE STREAMSIDE SALAMANDER (AMBYSTOMA BARBOURI). Environmental Toxicology and Chemistry, 2003, 22, 2385.	4.3	124
166	Color change and color-dependent behavior in response to predation risk in the salamander sister species Ambystoma barbouri and Ambystoma texanum. Oecologia, 2003, 137, 131-139.	2.0	55
167	Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum. Canadian Journal of Zoology, 2003, 81, 710-715.	1.0	34
168	Effects of larval exposure to triphenyltin on the survival, growth, and behavior of larval and juvenile <i>Ambystoma barbouri</i> salamanders. Environmental Toxicology and Chemistry, 2002, 21, 807-815.	4.3	18
169	Prey responses to pulses of risk and safety: testing the risk allocation hypothesis. Animal Behaviour, 2002, 63, 437-443.	1.9	166
170	Path analysis and the relative importance of male–female conflict, female choice and male–male competition in water striders. Animal Behaviour, 2002, 63, 1079-1089.	1.9	110
171	EFFECTS OF LARVAL EXPOSURE TO TRIPHENYLTIN ON THE SURVIVAL, GROWTH, AND BEHAVIOR OF LARVAL AND JUVENILE AMBYSTOMA BARBOURI SALAMANDERS. Environmental Toxicology and Chemistry, 2002, 21, 807.	4.3	11
172	Effects of larval exposure to triphenyltin on the survival, growth, and behavior of larval and juvenile Ambystoma barbouri salamanders. Environmental Toxicology and Chemistry, 2002, 21, 807-15.	4.3	5
173	Punishment and persistence pay: a new model of territory establishment and space use. Trends in Ecology and Evolution, 2001, 16, 477-479.	8.7	18
174	Optimal diet theory: when does it work, and when and why does it fail?. Animal Behaviour, 2001, 61, 379-390.	1.9	426
175	Does phylogenetic inertia explain the evolution of ineffective antipredator behavior in a sunfish-salamander system?. Behavioral Ecology and Sociobiology, 2000, 49, 48-56.	1.4	33
176	New insights on how temporal variation in predation risk shapes prey behavior. Trends in Ecology and Evolution, 2000, 15, 3-4.	8.7	167
177	Habitat loss: ecological, evolutionary and genetic consequences. Trends in Ecology and Evolution, 2000, 15, 132-134.	8.7	113
178	Comparison of Antipredator Responses of Two Related Water Striders to a Common Predator. Ethology, 1999, 105, 1019-1033.	1.1	7
179	Trait compensation and cospecialization in a freshwater snail: size, shape and antipredator behaviour. Animal Behaviour, 1999, 58, 397-407.	1.9	245
180	Fishing spiders, green sunfish, and a stream-dwelling water strider: male-female conflict and prey responses to single versus multiple predator environments. Oecologia, 1998, 117, 258-265.	2.0	82

#	Article	IF	CITATIONS
181	Emergent impacts of multiple predators on prey. Trends in Ecology and Evolution, 1998, 13, 350-355.	8.7	1,097
182	Gene Flow and Ineffective Antipredator Behavior in a Stream-Breeding Salamander. Evolution; International Journal of Organic Evolution, 1998, 52, 558.	2.3	71
183	Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 1998, 13, 77-81.	8.7	1,852
184	GENE FLOW AND INEFFECTIVE ANTIPREDATOR BEHAVIOR IN A STREAM-BREEDING SALAMANDER. Evolution; International Journal of Organic Evolution, 1998, 52, 558-565.	2.3	84
185	Effects of Predation Risk and Food Availability on the Activity, Habitat Use, Feeding Behavior and Mating Behavior of a Pond Water Strider, Gerris marginatus (Hemiptera). Ethology, 1998, 104, 661-669.	1.1	26
186	Predation risk and social interference as factors influencing habitat selection in two species of stream-dwelling waterstriders. Behavioral Ecology, 1997, 8, 351-363.	2.2	18
187	To hide or not to hide? Refuge use in a fluctuating environment. Trends in Ecology and Evolution, 1997, 12, 375-376.	8.7	166
188	Prey dispersal and predator impacts on stream benthic prey. , 1997, , 89-116.		11
189	Ephemeral Habitats and Variation in Behavior and Life History: Comparisons of Sibling Salamander Species. Oikos, 1996, 76, 337.	2.7	37
190	Delayed Hatching as a Response of Streamside Salamander Eggs to Chemical Cues from Predatory Sunfish. Oikos, 1996, 77, 331.	2.7	74
191	Male density, female density and inter-sexual conflict in a stream-dwelling insect. Animal Behaviour, 1996, 52, 929-939.	1.9	68
192	Assortative mating by size: A meta-analysis of mating patterns in water striders. Evolutionary Ecology, 1996, 10, 265-284.	1.2	135
193	Direct and indirect effects of multiple enemies on water strider mating dynamics. Oecologia, 1996, 105, 179-188.	2.0	25
194	An experimental test of condition-dependent mating behavior and habitat choice by water striders in the wild. Behavioral Ecology, 1996, 7, 474-479.	2.2	39
195	Experiments on the effects of food and density on voltinism in a stream-dwelling water strider (Aquarius remigis). Freshwater Biology, 1995, 34, 61-67.	2.4	6
196	A Review of the Drift and Activity Responses of Stream Prey to Predator Presence. Oikos, 1995, 73, 3.	2.7	126
197	Interacting effects of predation risk and male and female density on male/female conflicts and mating dynamics of stream water striders. Behavioral Ecology, 1995, 6, 316-325.	2.2	89
198	A limits-oriented approach to evolutionary ecology. Trends in Ecology and Evolution, 1995, 10, 378-382.	8.7	27

#	Article	IF	CITATIONS
199	Essay on Contemporary Issues in Ethology: Behavioral Ecology and the Study of Partner Choice. Ethology, 1995, 99, 265-277.	1.1	28
200	Predation risk and the evolutionary ecology of reproductive behaviour. Journal of Fish Biology, 1994, 45, 111-130.	1.6	146
201	Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system. Trends in Ecology and Evolution, 1994, 9, 289-293.	8.7	416
202	Prey Behavior, Prey Dispersal, and Predator Impacts on Stream Prey. Ecology, 1994, 75, 1199-1207.	3.2	146
203	Age, Experience, and the Response of Streamside Salamander Hatchlings to Chemical Cues from Predatory Sunfish. Ethology, 1994, 96, 253-259.	1.1	36
204	Predation risk and the evolutionary ecology of reproductive behaviour. Journal of Fish Biology, 1994, 45, 111-130.	1.6	6
205	Experimental studies on water strider mating dynamics: spatial variation in density and sex ratio. Behavioral Ecology and Sociobiology, 1993, 33, 107.	1.4	141
206	Delayed Hatching of Salamander Eggs in Response to Enhanced Larval Predation Risk. American Naturalist, 1993, 142, 947-960.	2.1	205
207	Oviposition Site Selection and Avoidance of Fish by Streamside Salamanders (Ambystoma barbouri). Copeia, 1992, 1992, 468.	1.3	86
208	Prey Uncertainty and the Balancing of Antipredator and Feeding Needs. American Naturalist, 1992, 139, 1052-1069.	2.1	466
209	Effects of Cryptic Oviposition on Egg Survival for Stream-Breeding, Streamside Salamanders. Journal of Herpetology, 1992, 26, 114.	0.5	4
210	Effects of Predatory Sunfish on the Density, Drift, and Refuge Use of Stream Salamander Larvae. Ecology, 1992, 73, 1418-1430.	3.2	177
211	Predation risk, food deprivation and non-random mating by size in the stream water strider, Aquarius remigis. Behavioral Ecology and Sociobiology, 1992, 31, 51-56.	1.4	113
212	Effects of refuge availability on the responses of salamander larvae to chemical cues from predatory green sunfish. Animal Behaviour, 1991, 42, 330-332.	1.9	54
213	The Influence of Starvation and Predators on the Mating Behavior of a Semiaquatic Insect. Ecology, 1991, 72, 2123-2136.	3.2	39
214	Mate Density, Predation Risk, and the Seasonal Sequence of Mate Choices: A Dynamic Game. American Naturalist, 1991, 137, 567-596.	2.1	205
215	An experimental study on the effects of salamander larvae on isopods in stream pools. Freshwater Biology, 1991, 25, 451-459.	2.4	26
216	Experimental studies on direct and indirect interactions in a three trophic-level stream system. Oecologia, 1991, 85, 530-536.	2.0	113

#	Article	IF	CITATIONS
217	Experimental Studies on Behaviorally Mediated, Indirect Interactions through a Shared Predator. Ecology, 1990, 71, 1515-1522.	3.2	100
218	An Experimental Study on the Effects of Predation Risk and Feeding Regime on the Mating Behavior of the Water Strider. American Naturalist, 1990, 135, 284-290.	2.1	228
219	An experimental study on the effects of crayfish on the predator-prey interaction between bass and sculpin. Oecologia, 1990, 85, 69-73.	2.0	22
220	Inadvertent errors and error-constrained optimization: fallible foraging by bluegill sunfish. Behavioral Ecology and Sociobiology, 1990, 27, 135-144.	1.4	9
221	Avoidance of Male Giant Water Striders By Females. Behaviour, 1990, 115, 247-253.	0.8	39
222	Interacting Effects of Predator and Prey Behavior in Determining Diets. , 1990, , 771-796.		58
223	Complex interactions in lake communities. Trends in Ecology and Evolution, 1989, 4, 356-358.	8.7	1
224	Optimal diets: simultaneous search and handling of multiple-prey loads by salamander larvae. Behavioral Ecology and Sociobiology, 1988, 23, 335-339.	1.4	7
225	The effects of predators on habitat use, activity and mating behaviour of a semi-aquatic bug. Animal Behaviour, 1988, 36, 1846-1848.	1.9	62
226	Antipredator Defenses and the Persistence of Amphibian Larvae With Fishes. Ecology, 1988, 69, 1865-1870.	3.2	396
227	On analyzing complex relationships between behaviour, state and fitness. Behavioral and Brain Sciences, 1988, 11, 148-149.	0.7	0
228	The Dynamics of Prey Refuge Use: A Model and Tests with Sunfish and Salamander Larvae. American Naturalist, 1988, 132, 463-483.	2.1	163
229	HABITAT DURATION, LENGTH OF LARVAL PERIOD, AND THE EVOLUTION OF A COMPLEX LIFE CYCLE OF A SALAMANDER, <i>AMBYSTOMA TEXANUM</i> . Evolution; International Journal of Organic Evolution, 1987, 41, 1347-1356.	2.3	31
230	Prey refuges and predator-prey stability. Theoretical Population Biology, 1987, 31, 1-12.	1.1	301
231	Patch Size, Pollinator Behavior, and Pollinator Limitation in Catnip. Ecology, 1987, 68, 1679-1690.	3.2	359
232	Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Animal Behaviour, 1987, 35, 420-425.	1.9	329
233	Habitat Duration, Length of Larval Period, and the Evolution of a Complex Life Cycle of a Salamander, Ambystoma texanum. Evolution; International Journal of Organic Evolution, 1987, 41, 1347.	2.3	11
234	Stream drift, size-specific predation, and the evolution of ovum size in an amphibian. Oecologia, 1987, 71, 624-630.	2.0	48

#	Article	IF	CITATIONS
235	Antipredator Responses and the Perception of Danger by Mosquito Larvae. Ecology, 1986, 67, 434-441.	3.2	297
236	Environmental Instability, Competition, and Density-Dependent Growth and Survivorship of a Stream-Dwelling Salamander. Ecology, 1986, 67, 729-736.	3.2	82
237	Evolution, Predator Avoidance, and Unsuccessful Predation. American Naturalist, 1985, 125, 153-157.	2.1	51
238	Predation, Competition, and Prey Communities: A Review of Field Experiments. Annual Review of Ecology, Evolution, and Systematics, 1985, 16, 269-311.	6.7	968
239	Optimal Diet Theory: Should the !Kung Eat Mongongos?. American Anthropologist, 1985, 87, 395-401.	1.4	10
240	The Behavioral Response Race Between Predator and Prey. American Naturalist, 1984, 123, 143-150.	2.1	251
241	Optimal Behavior and Density-Dependent Predation. American Naturalist, 1984, 123, 314-326.	2.1	89
242	Foraging Strategies and the Avoidance of Predation by an Aquatic Insect, Notonecta Hoffmanni. Ecology, 1982, 63, 786-796.	3.2	393
243	Optimal Patch Use: Variation in Selective Pressure for Efficient Foraging. American Naturalist, 1982, 120, 666-685.	2.1	75
244	Stability, Prey Density and Age/Dependent Interference in an Aquatic Insect Predator, Notonecta hoffmanni. Journal of Animal Ecology, 1981, 50, 625.	2.8	44
245	Tests of Some Predictions from the Macarthur-Levins Competition Models: A Critique. American Naturalist, 1981, 117, 550-559.	2.1	1
246	Optimal Foraging: Partial Consumption of Prey. American Naturalist, 1980, 116, 281-290.	2.1	152
247	Optimal Behavior: Can Foragers Balance Two Conflicting Demands?. Science, 1980, 210, 1041-1043.	12.6	784
248	Stability and Prey Behavioural Responses to Predator Density. Journal of Animal Ecology, 1979, 48, 79.	2.8	46
249	Optimal Diet: The Relative Importance of the Parameters. American Naturalist, 1979, 113, 460-463.	2.1	18
250	Age-Dependent Interference in a Predatory Insect. Journal of Animal Ecology, 1978, 47, 581.	2.8	56
251	Optimal Foraging Theory Used to Deduce the Energy Available in the Environment. Biotropica, 1977, 9, 216.	1.6	2