
Cecilia Johansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Type I interferons and MAVS signaling are necessary for tissue resident memory CD8+ T cell responses to RSV infection. PLoS Pathogens, 2022, 18, e1010272.	2.1	11
2	R848 or influenza virus can induce potent innate immune responses in the lungs of neonatal mice. Mucosal Immunology, 2021, 14, 267-276.	2.7	11
3	Rapidly Deployable Mouse Models of SARS-CoV-2 Infection Add Flexibility to the COVID-19 Toolbox. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 7-9.	1.4	3
4	Neutrophils in respiratory viral infections. Mucosal Immunology, 2021, 14, 815-827.	2.7	69
5	Lentiviral and AAV-mediated expression of palivizumab offer protection against Respiratory Syncytial Virus infection. Scientific Reports, 2021, 11, 15694.	1.6	5
6	Neutrophilic inflammation in the respiratory mucosa predisposes to RSV infection. Science, 2020, 370, .	6.0	100
7	MAVS Deficiency Is Associated With a Reduced T Cell Response Upon Secondary RSV Infection in Mice. Frontiers in Immunology, 2020, 11, 572747.	2.2	5
8	Neutrophils do not impact viral load or the peak of disease severity during RSV infection. Scientific Reports, 2020, 10, 1110.	1.6	23
9	Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection. Mucosal Immunology, 2019, 12, 1244-1255.	2.7	46
10	Induction of innate cytokine responses by respiratory mucosal challenge with R848 in zebrafish, mice, and humans. Journal of Allergy and Clinical Immunology, 2019, 144, 342-345.e7.	1.5	8
11	Chemokine regulation of inflammation during respiratory syncytial virus infection. F1000Research, 2019, 8, 1837.	0.8	30
12	Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. PLoS Pathogens, 2018, 14, e1006821.	2.1	32
13	Protective and Harmful Immunity to RSV Infection. Annual Review of Immunology, 2017, 35, 501-532.	9.5	169
14	Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO Journal, 2017, 36, 2404-2418.	3.5	80
15	Type I Interferons as Regulators of Lung Inflammation. Frontiers in Immunology, 2017, 8, 259.	2.2	128
16	T cell responses are elicited against Respiratory Syncytial Virus in the absence of signalling through TLRs, RLRs and IL-1R/IL-18R. Scientific Reports, 2016, 5, 18533.	1.6	22
17	Alveolar Macrophages Can Control Respiratory Syncytial Virus Infection in the Absence of Type I Interferons. Journal of Innate Immunity, 2016, 8, 452-463.	1.8	48
18	Respiratory syncytial virus infection: an innate perspective. F1000Research, 2016, 5, 2898.	0.8	33

CECILIA JOHANSSON

#	Article	IF	CITATIONS
19	Alveolar macrophage–derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. Journal of Experimental Medicine, 2015, 212, 699-714.	4.2	223
20	DNGRâ€1 is dispensable for CD8 + Tâ€cell priming during respiratory syncytial virus infection. European Journal of Immunology, 2014, 44, 2340-2348.	1.6	11
21	Alpha/Beta Interferon Receptor Signaling Amplifies Early Proinflammatory Cytokine Production in the Lung during Respiratory Syncytial Virus Infection. Journal of Virology, 2014, 88, 6128-6136.	1.5	122
22	Regulatory T Cells Prevent Th2 Immune Responses and Pulmonary Eosinophilia during Respiratory Syncytial Virus Infection in Mice. Journal of Virology, 2013, 87, 10946-10954.	1.5	84
23	Defective immunoregulation in RSV vaccine-augmented viral lung disease restored by selective chemoattraction of regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2987-2992.	3.3	90
24	Neonatal antibody responses are attenuated by interferon-γ produced by NK and T cells during RSV infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5576-5581.	3.3	36
25	Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunology, 2012, 5, 161-172.	2.7	156
26	IL-10 Regulates Viral Lung Immunopathology during Acute Respiratory Syncytial Virus Infection in Mice. PLoS ONE, 2012, 7, e32371.	1.1	116
27	CD25 ⁺ Natural Regulatory T Cells Are Critical in Limiting Innate and Adaptive Immunity and Resolving Disease following Respiratory Syncytial Virus Infection. Journal of Virology, 2010, 84, 8790-8798.	1.5	133
28	Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus. Journal of Experimental Medicine, 2007, 204, 1349-1358.	4.2	74
29	Elevated neutrophil, macrophage and dendritic cell numbers characterize immune cell populations in mice chronically infected with Salmonella. Microbial Pathogenesis, 2006, 41, 49-58.	1.3	32
30	Affecting the effectors: a kick in the gut?. Nature Immunology, 2005, 6, 644-646.	7.0	5
31	The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection withSalmonella typhimurium. European Journal of Immunology, 2005, 35, 2100-2109.	1.6	62
32	Phenotype and function of intestinal dendritic cells. Seminars in Immunology, 2005, 17, 284-294.	2.7	87
33	Liver Dendritic Cells Present Bacterial Antigens and Produce Cytokines upon <i>Salmonella</i> Encounter. Journal of Immunology, 2004, 172, 2496-2503.	0.4	45
34	Dendritic cells as inducers of antimicrobial immunity in vivo. Apmis, 2003, 111, 715-724.	0.9	27
35	The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10913-10918.	3.3	306
36	Salmonella typhimurium -induced cytokine production and surface molecule expression by murine macrophages. Microbial Pathogenesis, 2001, 31, 91-102.	1.3	14

#	Article	IF	CITATIONS
37	Salmonellainfection of bone marrow-derived macrophages and dendritic cells: influence on antigen presentation and initiating an immune response. FEMS Immunology and Medical Microbiology, 2000, 27, 313-320.	2.7	87
38	Salmonella enterica Serovar Typhimurium-Induced Maturation of Bone Marrow-Derived Dendritic Cells. Infection and Immunity, 2000, 68, 6311-6320.	1.0	63
39	Interactions between Salmonella and dendritic cells: what happens along the way?. , 0, , 279-298.		2