Xiuli Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557543/publications.pdf

Version: 2024-02-01

		218677	276875
57	1,771 citations	26	41
papers	citations	h-index	g-index
-7	5 7	-7	2702
57	57	57	2793
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Binary regulation of the tumor microenvironment by a pH-responsive reversible shielding nanoplatform for improved tumor chemo-immunotherapy. Acta Biomaterialia, 2022, 138, 505-517.	8.3	12
2	Evasion of the accelerated blood clearance phenomenon by branched PEG lipid derivative coating of nanoemulsions. International Journal of Pharmaceutics, 2022, 612, 121365.	5.2	7
3	Tumor-specific nitric oxide generator to amplify peroxynitrite based on highly penetrable nanoparticles for metastasis inhibition and enhanced cancer therapy. Biomaterials, 2022, 283, 121448.	11.4	41
4	Branched PEG-modification: A new strategy for nanocarriers to evade of the accelerated blood clearance phenomenon and enhance anti-tumor efficacy. Biomaterials, 2022, 283, 121415.	11.4	25
5	Multi-functional platelet membrane-camouflaged nanoparticles reduce neuronal apoptosis and regulate microglial phenotype during ischemic injury. Applied Materials Today, 2022, 27, 101412.	4.3	7
6	Watson–Crick Base Pairing-Inspired Laser/GSH Activatable miRNA-Coordination Polymer Nanoplexes for Combined Cancer Chemo-Immuno-Photothermal Therapy. ACS Applied Materials & Diterfaces, 2022, 14, 20762-20777.	8.0	10
7	Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 3694-3709.	12.0	13
8	Tumor-permeated ATP-based size-controllable immunogenic cell death amplifier remodel immunosuppressive microenvironment to boost cancer immunotherapy. Applied Materials Today, 2022, 28, 101518.	4.3	2
9	A phenolic based tumor-permeated nano-framework for immunogenic cell death induction combined with PD-L1 immune checkpoint blockade. Biomaterials Science, 2022, 10, 3808-3822.	5.4	7
10	Rational Design of Hyaluronic Acid-Based Copolymer-Mixed Micelle in Combination PD-L1 Immune Checkpoint Blockade for Enhanced Chemo-Immunotherapy of Melanoma. Frontiers in Bioengineering and Biotechnology, 2021, 9, 653417.	4.1	3
11	Stimuli-Responsive and Highly Penetrable Nanoparticles as a Multifunctional Nanoplatform for Boosting Nonsmall Cell Lung Cancer siRNA Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 3141-3155.	5.2	11
12	Laser/GSH-Activatable Oxaliplatin/Phthalocyanine-Based Coordination Polymer Nanoparticles Combining Chemophotodynamic Therapy to Improve Cancer Immunotherapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 39934-39948.	8.0	31
13	Construction of Hierarchical-Targeting pH-Sensitive Liposomes to Reverse Chemotherapeutic Resistance of Cancer Stem-like Cells. Pharmaceutics, 2021, 13, 1205.	4.5	6
14	Targeted Delivery of Dasatinib to Deplete Tumor-Associated Macrophages by Mannosylated Mixed Micelles for Tumor Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 5675-5684.	5.2	13
15	Stimuli-responsive release and efficient siRNA delivery in non-small cell lung cancer by a poly(<scp>I</scp> -histidine)-based multifunctional nanoplatform. Journal of Materials Chemistry B, 2020, 8, 1616-1628.	5 . 8	38
16	Synthesis and Characterization of pH-Responsive PEG-Poly(\hat{l}^2 -Amino Ester) Block Copolymer Micelles as Drug Carriers to Eliminate Cancer Stem Cells. Pharmaceutics, 2020, 12, 111.	4. 5	22
17	HA-Modified R8-Based Bola-Amphiphile Nanocomplexes for Effective Improvement of siRNA Delivery Efficiency. ACS Biomaterials Science and Engineering, 2020, 6, 2084-2093.	5.2	14
18	Multi-Modulation of Doxorubicin Resistance in Breast Cancer Cells by Poly(l-histidine)-Based Multifunctional Micelles. Pharmaceutics, 2019, 11, 385.	4.5	10

#	Article	IF	CITATIONS
19	A versatile polyion complex can intelligently respond to a tumor microenvironment to eliminate tumor stem cells for enhanced lung cancer targeted therapy. Biomaterials Science, 2019, 7, 3751-3763.	5.4	10
20	Co-delivery of p53 and MDM2 inhibitor RG7388 using a hydroxyl terminal PAMAM dendrimer derivative for synergistic cancer therapy. Acta Biomaterialia, 2019, 100, 118-131.	8.3	14
21	pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16296-16310.	8.0	76
22	Tailored Polymers with Complement Activation Ability To Improve Antitumor Immunity. Molecular Pharmaceutics, 2019, 16, 2648-2660.	4.6	6
23	Dual-Responsive Size-Shrinking Nanocluster with Hierarchical Disassembly Capability for Improved Tumor Penetration and Therapeutic Efficacy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11865-11875.	8.0	31
24	Targeted Delivery of miRNA 155 to Tumor Associated Macrophages for Tumor Immunotherapy. Molecular Pharmaceutics, 2019, 16, 1714-1722.	4.6	41
25	Targeted Delivery of Zoledronate to Tumor-Associated Macrophages for Cancer Immunotherapy. Molecular Pharmaceutics, 2019, 16, 2249-2258.	4.6	64
26	Eph A10-modified pH-sensitive liposomes loaded with novel triphenylphosphine–docetaxel conjugate possess hierarchical targetability and sufficient antitumor effect both ⟨i⟩in vitro⟨/i⟩ and ⟨i⟩in vivo⟨/i⟩. Drug Delivery, 2018, 25, 723-737.	5.7	30
27	Rational Design of Multifunctional Polymeric Nanoparticles Based on Poly(<scp> </scp> -histidine) and d-α-Vitamin E Succinate for Reversing Tumor Multidrug Resistance. Biomacromolecules, 2018, 19, 2595-2609.	5.4	26
28	Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials, 2018, 162, 47-59.	11.4	62
29	Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. Materials Science and Engineering C, 2018, 92, 1031-1040.	7.3	38
30	Synthetic Polymeric Mixed Micelles Targeting Lymph Nodes Trigger Enhanced Cellular and Humoral Immune Responses. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2874-2889.	8.0	63
31	pH-responsive hybrid nanoparticle with enhanced dissociation characteristic for siRNA delivery. International Journal of Nanomedicine, 2018, Volume 13, 6885-6902.	6.7	18
32	Overcoming Multidrug Resistance by Codelivery of MDR1-Targeting siRNA and Doxorubicin Using EphA10-Mediated pH-Sensitive Lipoplexes: In Vitro and In Vivo Evaluation. ACS Applied Materials & lnterfaces, 2018, 10, 21590-21600.	8.0	47
33	New therapeutic strategies based on interference with telomeric DNA synthesis of tumor cells to suppress the growth of tumors. RSC Advances, 2018, 8, 25001-25007.	3.6	1
34	Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. International Journal of Nanomedicine, 2018, Volume 13, 4209-4226.	6.7	53
35	Preparation and evaluation of poly(I -histidine) based pH-sensitive micelles for intracellular delivery of doxorubicin against MCF-7/ADR cells. Asian Journal of Pharmaceutical Sciences, 2017, 12, 433-441.	9.1	22
36	Nanoparticles for tumor immunotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 243-256.	4.3	92

#	Article	IF	CITATIONS
37	Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomaterialia, 2017, 50, 381-395.	8.3	54
38	Further exploring the feasibility of dendritic cells-targeted biomimetic Texosomes as a therapeutic and preventive tumor-vaccine. RSC Advances, 2017, 7, 9465-9471.	3.6	0
39	A gene delivery system containing nuclear localization signal: Increased nucleus import and transfection efficiency with the assistance of RanGAP1. Acta Biomaterialia, 2017, 48, 215-226.	8.3	30
40	Decoration of pH-sensitive copolymer micelles with tumor-specific peptide for enhanced cellular uptake of doxorubicin. International Journal of Nanomedicine, 2016, Volume 11, 5415-5427.	6.7	11
41	The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells. International Journal of Nanomedicine, 2016, Volume 11, 3677-3690.	6.7	48
42	Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of siRNA. International Journal of Nanomedicine, 2016, Volume 11, 3951-3967.	6.7	25
43	Synthesis and characterization of a PAMAM-OH derivative containing an acid-labile \hat{l}^2 -thiopropionate bond for gene delivery. International Journal of Pharmaceutics, 2016, 509, 314-327.	5.2	26
44	Enhancement of anti-tumor immune responses induced by ligand-mediated biomimetic Texosomes. RSC Advances, 2016, 6, 55819-55824.	3.6	1
45	Self-assembly of pH-responsive dextran-g-poly(lactide-co-glycolide)-g-histidine copolymer micelles for intracellular delivery of paclitaxel and its antitumor activity. RSC Advances, 2016, 6, 23693-23701.	3.6	20
46	Novel glycyrrhetinic acid conjugated pH-sensitive liposomes for the delivery of doxorubicin and its antitumor activities. RSC Advances, 2016, 6, 17782-17791.	3.6	31
47	Poly(I-histidine) based copolymers: Effect of the chemically substituted I-histidine on the physio-chemical properties of the micelles and in vivo biodistribution. Colloids and Surfaces B: Biointerfaces, 2016, 140, 176-184.	5.0	13
48	Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. International Journal of Nanomedicine, 2015, 10, 4747.	6.7	81
49	Tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier for targeted intracellular delivery of paclitaxel. International Journal of Pharmaceutics, 2015, 480, 116-127.	5.2	18
50	A novel micro-emulsion and micelle assembling method to prepare DEC205 monoclonal antibody coupled cationic nanoliposomes for simulating exosomes to target dendritic cells. International Journal of Pharmaceutics, 2015, 491, 105-112.	5.2	30
51	Single peptide ligand-functionalized uniform hollow mesoporous silica nanoparticles achieving dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells. International Journal of Nanomedicine, 2015, 10, 1855.	6.7	27
52	Synergistic effect of cucurbitacin B in combination with curcumin via enhancing apoptosis induction and reversing multidrug resistance in human hepatoma cells. European Journal of Pharmacology, 2015, 768, 28-40.	3.5	43
53	pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomaterialia, 2015, 11, 137-150.	8.3	93
54	Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials, 2014, 35, 9877-9887.	11.4	145

XIULI ZHAO

#	Article	IF	CITATION
55	Thermo- and pH-responsive copolymers based on PLGA-PEG-PLGA and poly(l-histidine): Synthesis and in vitro characterization of copolymer micelles. Acta Biomaterialia, 2014, 10, 1259-1271.	8.3	62
56	Sensitive Liquid Chromatographic Assay for the Simultaneous Determination of Ibuprofen and Its Prodrug, Ibuprofen Eugenol Ester, in Rat Plasma. Yakugaku Zasshi, 2005, 125, 733-737.	0.2	9
57	Synthesis of Ibuprofen Eugenol Ester and Its Microemulsion Formulation for Parenteral Delivery. Chemical and Pharmaceutical Bulletin, 2005, 53, 1246-1250.	1.3	38