
Xiuli Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557543/publications.pdf Version: 2024-02-01

Χυμι Ζηλο

#	Article	IF	CITATIONS
1	Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials, 2014, 35, 9877-9887.	11.4	145
2	pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomaterialia, 2015, 11, 137-150.	8.3	93
3	Nanoparticles for tumor immunotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 243-256.	4.3	92
4	Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. International Journal of Nanomedicine, 2015, 10, 4747.	6.7	81
5	pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 16296-16310.	8.0	76
6	Targeted Delivery of Zoledronate to Tumor-Associated Macrophages for Cancer Immunotherapy. Molecular Pharmaceutics, 2019, 16, 2249-2258.	4.6	64
7	Synthetic Polymeric Mixed Micelles Targeting Lymph Nodes Trigger Enhanced Cellular and Humoral Immune Responses. ACS Applied Materials & Interfaces, 2018, 10, 2874-2889.	8.0	63
8	Thermo- and pH-responsive copolymers based on PLGA-PEC-PLGA and poly(l-histidine): Synthesis and in vitro characterization of copolymer micelles. Acta Biomaterialia, 2014, 10, 1259-1271.	8.3	62
9	Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials, 2018, 162, 47-59.	11.4	62
10	Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomaterialia, 2017, 50, 381-395.	8.3	54
11	Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. International Journal of Nanomedicine, 2018, Volume 13, 4209-4226.	6.7	53
12	The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells. International Journal of Nanomedicine, 2016, Volume 11, 3677-3690.	6.7	48
13	Overcoming Multidrug Resistance by Codelivery of MDR1-Targeting siRNA and Doxorubicin Using EphA10-Mediated pH-Sensitive Lipoplexes: In Vitro and In Vivo Evaluation. ACS Applied Materials & Interfaces, 2018, 10, 21590-21600.	8.0	47
14	Synergistic effect of cucurbitacin B in combination with curcumin via enhancing apoptosis induction and reversing multidrug resistance in human hepatoma cells. European Journal of Pharmacology, 2015, 768, 28-40.	3.5	43
15	Targeted Delivery of miRNA 155 to Tumor Associated Macrophages for Tumor Immunotherapy. Molecular Pharmaceutics, 2019, 16, 1714-1722.	4.6	41
16	Tumor-specific nitric oxide generator to amplify peroxynitrite based on highly penetrable nanoparticles for metastasis inhibition and enhanced cancer therapy. Biomaterials, 2022, 283, 121448.	11.4	41
17	Synthesis of Ibuprofen Eugenol Ester and Its Microemulsion Formulation for Parenteral Delivery. Chemical and Pharmaceutical Bulletin, 2005, 53, 1246-1250.	1.3	38
18	Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. Materials Science and Engineering C, 2018, 92, 1031-1040.	7.3	38

XIULI ZHAO

#	Article	IF	CITATIONS
19	Stimuli-responsive release and efficient siRNA delivery in non-small cell lung cancer by a poly(<scp>l</scp> -histidine)-based multifunctional nanoplatform. Journal of Materials Chemistry B, 2020, 8, 1616-1628.	5.8	38
20	Novel glycyrrhetinic acid conjugated pH-sensitive liposomes for the delivery of doxorubicin and its antitumor activities. RSC Advances, 2016, 6, 17782-17791.	3.6	31
21	Dual-Responsive Size-Shrinking Nanocluster with Hierarchical Disassembly Capability for Improved Tumor Penetration and Therapeutic Efficacy. ACS Applied Materials & Interfaces, 2019, 11, 11865-11875.	8.0	31
22	Laser/CSH-Activatable Oxaliplatin/Phthalocyanine-Based Coordination Polymer Nanoparticles Combining Chemophotodynamic Therapy to Improve Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2021, 13, 39934-39948.	8.0	31
23	A novel micro-emulsion and micelle assembling method to prepare DEC205 monoclonal antibody coupled cationic nanoliposomes for simulating exosomes to target dendritic cells. International Journal of Pharmaceutics, 2015, 491, 105-112.	5.2	30
24	A gene delivery system containing nuclear localization signal: Increased nucleus import and transfection efficiency with the assistance of RanGAP1. Acta Biomaterialia, 2017, 48, 215-226.	8.3	30
25	Eph A10-modified pH-sensitive liposomes loaded with novel triphenylphosphine–docetaxel conjugate possess hierarchical targetability and sufficient antitumor effect both <i>in vitro</i> and <i>in vivo</i> , 2018, 25, 723-737.	5.7	30
26	Single peptide ligand-functionalized uniform hollow mesoporous silica nanoparticles achieving dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells. International Journal of Nanomedicine, 2015, 10, 1855.	6.7	27
27	Synthesis and characterization of a PAMAM-OH derivative containing an acid-labile Î ² -thiopropionate bond for gene delivery. International Journal of Pharmaceutics, 2016, 509, 314-327.	5.2	26
28	Rational Design of Multifunctional Polymeric Nanoparticles Based on Poly(<scp>l</scp> -histidine) and d-α-Vitamin E Succinate for Reversing Tumor Multidrug Resistance. Biomacromolecules, 2018, 19, 2595-2609.	5.4	26
29	Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of siRNA. International Journal of Nanomedicine, 2016, Volume 11, 3951-3967.	6.7	25
30	Branched PEC-modification: A new strategy for nanocarriers to evade of the accelerated blood clearance phenomenon and enhance anti-tumor efficacy. Biomaterials, 2022, 283, 121415.	11.4	25
31	Preparation and evaluation of poly(I -histidine) based pH-sensitive micelles for intracellular delivery of doxorubicin against MCF-7/ADR cells. Asian Journal of Pharmaceutical Sciences, 2017, 12, 433-441.	9.1	22
32	Synthesis and Characterization of pH-Responsive PEG-Poly(β-Amino Ester) Block Copolymer Micelles as Drug Carriers to Eliminate Cancer Stem Cells. Pharmaceutics, 2020, 12, 111.	4.5	22
33	Self-assembly of pH-responsive dextran-g-poly(lactide-co-glycolide)-g-histidine copolymer micelles for intracellular delivery of paclitaxel and its antitumor activity. RSC Advances, 2016, 6, 23693-23701.	3.6	20
34	Tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier for targeted intracellular delivery of paclitaxel. International Journal of Pharmaceutics, 2015, 480, 116-127.	5.2	18
35	pH-responsive hybrid nanoparticle with enhanced dissociation characteristic for siRNA delivery. International Journal of Nanomedicine, 2018, Volume 13, 6885-6902.	6.7	18
36	Co-delivery of p53 and MDM2 inhibitor RG7388 using a hydroxyl terminal PAMAM dendrimer derivative for synergistic cancer therapy. Acta Biomaterialia, 2019, 100, 118-131.	8.3	14

XIULI ZHAO

#	Article	IF	CITATIONS
37	HA-Modified R8-Based Bola-Amphiphile Nanocomplexes for Effective Improvement of siRNA Delivery Efficiency. ACS Biomaterials Science and Engineering, 2020, 6, 2084-2093.	5.2	14
38	Poly(l -histidine) based copolymers: Effect of the chemically substituted l -histidine on the physio-chemical properties of the micelles and in vivo biodistribution. Colloids and Surfaces B: Biointerfaces, 2016, 140, 176-184.	5.0	13
39	Targeted Delivery of Dasatinib to Deplete Tumor-Associated Macrophages by Mannosylated Mixed Micelles for Tumor Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 5675-5684.	5.2	13
40	Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 3694-3709.	12.0	13
41	Binary regulation of the tumor microenvironment by a pH-responsive reversible shielding nanoplatform for improved tumor chemo-immunotherapy. Acta Biomaterialia, 2022, 138, 505-517.	8.3	12
42	Decoration of pH-sensitive copolymer micelles with tumor-specific peptide for enhanced cellular uptake of doxorubicin. International Journal of Nanomedicine, 2016, Volume 11, 5415-5427.	6.7	11
43	Stimuli-Responsive and Highly Penetrable Nanoparticles as a Multifunctional Nanoplatform for Boosting Nonsmall Cell Lung Cancer siRNA Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 3141-3155.	5.2	11
44	Multi-Modulation of Doxorubicin Resistance in Breast Cancer Cells by Poly(l-histidine)-Based Multifunctional Micelles. Pharmaceutics, 2019, 11, 385.	4.5	10
45	A versatile polyion complex can intelligently respond to a tumor microenvironment to eliminate tumor stem cells for enhanced lung cancer targeted therapy. Biomaterials Science, 2019, 7, 3751-3763.	5.4	10
46	Watson–Crick Base Pairing-Inspired Laser/GSH Activatable miRNA-Coordination Polymer Nanoplexes for Combined Cancer Chemo-Immuno-Photothermal Therapy. ACS Applied Materials & Interfaces, 2022, 14, 20762-20777.	8.0	10
47	Sensitive Liquid Chromatographic Assay for the Simultaneous Determination of Ibuprofen and Its Prodrug, Ibuprofen Eugenol Ester, in Rat Plasma. Yakugaku Zasshi, 2005, 125, 733-737.	0.2	9
48	Evasion of the accelerated blood clearance phenomenon by branched PEG lipid derivative coating of nanoemulsions. International Journal of Pharmaceutics, 2022, 612, 121365.	5.2	7
49	Multi-functional platelet membrane-camouflaged nanoparticles reduce neuronal apoptosis and regulate microglial phenotype during ischemic injury. Applied Materials Today, 2022, 27, 101412.	4.3	7
50	A phenolic based tumor-permeated nano-framework for immunogenic cell death induction combined with PD-L1 immune checkpoint blockade. Biomaterials Science, 2022, 10, 3808-3822.	5.4	7
51	Tailored Polymers with Complement Activation Ability To Improve Antitumor Immunity. Molecular Pharmaceutics, 2019, 16, 2648-2660.	4.6	6
52	Construction of Hierarchical-Targeting pH-Sensitive Liposomes to Reverse Chemotherapeutic Resistance of Cancer Stem-like Cells. Pharmaceutics, 2021, 13, 1205.	4.5	6
53	Rational Design of Hyaluronic Acid-Based Copolymer-Mixed Micelle in Combination PD-L1 Immune Checkpoint Blockade for Enhanced Chemo-Immunotherapy of Melanoma. Frontiers in Bioengineering and Biotechnology, 2021, 9, 653417.	4.1	3
54	Tumor-permeated ATP-based size-controllable immunogenic cell death amplifier remodel immunosuppressive microenvironment to boost cancer immunotherapy. Applied Materials Today, 2022, 28, 101518.	4.3	2

Xiuli Zhao

#	Article	IF	CITATIONS
58	Enhancement of anti-tumor immune responses induced by ligand-mediated biomimetic Texosomes. RSC Advances, 2016, 6, 55819-55824.	3.6	1
50	New therapeutic strategies based on interference with telomeric DNA synthesis of tumor cells to suppress the growth of tumors. RSC Advances, 2018, 8, 25001-25007.	3.6	1
57	Further exploring the feasibility of dendritic cells-targeted biomimetic Texosomes as a therapeutic and preventive tumor-vaccine. RSC Advances, 2017, 7, 9465-9471.	3.6	0