Stefano Passerini

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5557184/stefano-passerini-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39,667 694 163 104 h-index g-index citations papers 8 8.5 45,441 792 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
694	Photo-Crosslinked Single-Ion Conducting Polymer Electrolyte for Lithium-Metal Batteries <i>Macromolecular Rapid Communications</i> , 2022 , e2100820	4.8	1
693	Diagnosis tools for humidity-born surface contaminants on Li[Ni0.8Mn0.1Co0.1]O2 cathode materials for lithium batteries. <i>Journal of Power Sources</i> , 2022 , 525, 231111	8.9	3
692	Silicon anode systems for lithium-ion batteries 2022 , 3-46		O
691	Synergistic Effect of Co and Mn Co-Doping on SnO2 Lithium-Ion Anodes. <i>Inorganics</i> , 2022 , 10, 46	2.9	О
690	Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries* 2022 , 55-99		5
689	Elucidating the Role of Microstructure in Thiophosphate Electrolytes - a Combined Experimental and Theoretical Study of £Li PS <i>Advanced Science</i> , 2022 , e2105234	13.6	3
688	Quantification of charge compensation in lithium- and manganese-rich Li-ion cathode materials by x-ray spectroscopies. <i>Materials Today Physics</i> , 2022 , 24, 100687	8	О
687	Quasi-Solid-State Lithium Metal Batteries Using the LiNiCoMnO-LiAlTi(PO) Composite Positive Electrode. <i>ACS Applied Materials & District Materials & Distric</i>	9.5	О
686	Combined Role of Biaxial Strain and Nonstoichiometry for the Electronic, Magnetic, and Redox Properties of Lithiated Metal-Oxide Films: The LiMnO Case. <i>ACS Applied Materials & Distriction</i> (2021), 13, 54610-54619	9.5	
685	Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries. <i>Energy Storage Materials</i> , 2021 , 44, 370-370	19.4	11
684	Monitoring the Sodiation Mechanism of Anatase TiO2 Nanoparticle-Based Electrodes for Sodium-Ion Batteries by Operando XANES Measurements. <i>ACS Applied Energy Materials</i> , 2021 , 4, 164-17	,£.1	4
683	Effect of Applying a Carbon Coating on the Crystal Structure and De-/Lithiation Mechanism of Mn-Doped ZnO Lithium-Ion Anodes. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 030503	3.9	3
682	Assessing the Reactivity of Hard Carbon Anodes: Linking Material Properties with Electrochemical Response Upon Sodium- and Lithium-Ion Storage. <i>Batteries and Supercaps</i> , 2021 , 4, 960-977	5.6	3
681	Working Principle of an Ionic Liquid Interlayer During Pressureless Lithium Stripping on Li6.25Al0.25La3Zr2O12 (LLZO) Garnet-Type Solid Electrolyte. <i>Batteries and Supercaps</i> , 2021 , 4, 1145-115	5 5 .6	4
6 80	Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 2791	2.6	О
679	Impact of Crystal Density on the Electrochemical Behavior of Lithium-Ion Anode Materials: Exemplary Investigation of (Fe-Doped) GeO2. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 8947-8958	3.8	2
678	Transport studies of NaPF6 carbonate solvents-based sodium ion electrolytes. <i>Electrochimica Acta</i> , 2021 , 377, 138062	6.7	4

(2021-2021)

677	Isovalent vs. aliovalent transition metal doping of zinc oxide lithium-ion battery anodes In-depth investigation by ex situ and operando X-ray absorption spectroscopy. <i>Materials Today Chemistry</i> , 2021 , 20, 100478	6.2	3
676	Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer. <i>Advanced Energy Materials</i> , 2021 , 11, 2101339	21.8	9
675	Reversible Copper Sulfide Conversion in Nonflammable Trimethyl Phosphate Electrolytes for Safe Sodium-Ion Batteries. <i>Small Structures</i> , 2021 , 2, 2100035	8.7	17
674	Enhanced Li Transport in Ionic Liquid-Based Electrolytes Aided by Fluorinated Ethers for Highly Efficient Lithium Metal Batteries with Improved Rate Capability <i>Small Methods</i> , 2021 , 5, e2100168	12.8	14
673	Lithium Phosphonate Functionalized Polymer Coating for High-Energy Li[Ni0.8Co0.1Mn0.1]O2 with Superior Performance at Ambient and Elevated Temperatures. <i>Advanced Functional Materials</i> , 2021 , 31, 2105343	15.6	11
672	Gravure-Printed Conversion/Alloying Anodes for Lithium-Ion Batteries. <i>Energy Technology</i> , 2021 , 9, 210	03.‡5	1
671	Challenges and Strategies for High-Energy Aqueous Electrolyte Rechargeable Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 598-616	16.4	94
670	WEsrige Hochleistungsbatterien: Herausforderungen und Strategien. <i>Angewandte Chemie</i> , 2021 , 133, 608-626	3.6	5
669	Synergistic electrolyte additives for enhancing the performance of high-voltage lithium-ion cathodes in half-cells and full-cells. <i>Journal of Power Sources</i> , 2021 , 482, 228975	8.9	13
668	Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. <i>Journal of Power Sources</i> , 2021 , 485, 229329	8.9	11
667	Nonfluorinated Ionic Liquid Electrolytes for Lithium Metal Batteries: Ionic Conduction, Electrochemistry, and Interphase Formation. <i>Advanced Energy Materials</i> , 2021 , 11, 2003521	21.8	15
666	Ionic Liquid in Li Salt Electrolyte: Modifying the Li+ Transport Mechanism by Coordination to an Asymmetric Anion. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000078	1.6	13
665	The unseen evidence of Reduced Ionicity: The elephant in (the) room temperature ionic liquids. Journal of Molecular Liquids, 2021 , 324, 115069	6	9
664	Tragacanth Gum as Green Binder for Sustainable Water-Processable Electrochemical Capacitor. <i>ChemSusChem</i> , 2021 , 14, 356-362	8.3	9
663	Sodium Cyclopentadienide as a New Type of Electrolyte for Sodium Batteries. <i>ChemElectroChem</i> , 2021 , 8, 365-369	4.3	
662	Tin-Containing Graphite for Sodium-lon Batteries and Hybrid Capacitors. <i>Batteries and Supercaps</i> , 2021 , 4, 173-182	5.6	12
661	ZnO-Based Conversion/Alloying Negative Electrodes for Lithium-Ion Batteries: Impact of Mixing Intimacy. <i>Energy Technology</i> , 2021 , 9, 2001084	3.5	2
660	Impact of the Transition Metal Dopant in Zinc Oxide Lithium-Ion Anodes on the Solid Electrolyte Interphase Formation <i>Small Methods</i> , 2021 , 5, e2001021	12.8	9

659	Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1195-1201	6.4	3
658	Effect of the Secondary Rutile Phase in Single-Step Synthesized Carbon-Coated Anatase TiO2 Nanoparticles as Lithium-Ion Anode Material. <i>Energy Technology</i> , 2021 , 9, 2001067	3.5	2
657	An Alternative Charge-Storage Mechanism for High-Performance Sodium-Ion and Potassium-Ion Anodes. <i>ACS Energy Letters</i> , 2021 , 6, 915-924	20.1	10
656	Embedding Heterostructured & MnS/MnO Nanoparticles in S-Doped Carbonaceous Porous Framework as High-Performance Anode for Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2021 , 8, 918-927	4.3	8
655	Acidic Ionic Liquids Enabling Intermediate Temperature Operation Fuel Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 8370-8382	9.5	7
654	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Zn-Metal Battery. <i>Advanced Energy Materials</i> , 2021 , 11, 2100962	21.8	9
653	Liquid-Assisted Mechanochemical Synthesis of Lil-Doped Sulfide Glass Electrolyte. <i>Energy Technology</i> , 2021 , 9, 2100385	3.5	2
652	Ordered nano-structured mesoporous CMK-8 and other carbonaceous positive electrodes for rechargeable aluminum batteries. <i>Chemical Engineering Journal</i> , 2021 , 417, 129131	14.7	6
651	A Thin and Uniform Fluoride-Based Artificial Interphase for the Zinc Metal Anode Enabling Reversible Zn/MnO2 Batteries. <i>ACS Energy Letters</i> , 2021 , 6, 3063-3071	20.1	39
650	Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. <i>Joule</i> , 2021 , 5, 2177-2194	27.8	21
649	Cycle parameter dependent degradation analysis in automotive lithium-ion cells. <i>Journal of Power Sources</i> , 2021 , 506, 230227	8.9	2
648	High-Li+-fraction ether-side-chain pyrrolidinium symmetric imide ionic liquid electrolyte for high-energy-density Si//Ni-rich layered oxide Li-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 430, 132693	14.7	6
647	Redox-Mediated Red-Phosphorous Semi-Liquid Anode Enabling Metal-Free Rechargeable Na-Seawater Batteries with High Energy Density. <i>Advanced Energy Materials</i> , 2021 , 11, 2102061	21.8	7
646	Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. <i>Nature Communications</i> , 2021 , 12, 5459	17.4	40
645	A novel phosphonium ionic liquid electrolyte enabling high-voltage and high-energy positive electrode materials in lithium-metal batteries. <i>Energy Storage Materials</i> , 2021 , 42, 826-835	19.4	4
644	A mismatch electrical conductivity skeleton enables dendritefree and high stability lithium metal anode. <i>Nano Energy</i> , 2021 , 89, 106421	17.1	O
643	On the nanoscopic structural heterogeneity of liquid -alkyl carboxylic acids. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 20282-20287	3.6	1
642	Disclosing the hierarchical structure of ionic liquid mixtures by multiscale computational methods 2021 , 1-67		O

(2020-2021)

641	Titanium Activation in Prussian Blue Based Electrodes for Na-ion Batteries: A Synthesis and Electrochemical Study. <i>Batteries</i> , 2021 , 7, 5	5.7	4
640	Molecular Insight into Microstructural and Dynamical Heterogeneities in Magnesium Ionic Liquid Electrolytes <i>Journal of Physical Chemistry Letters</i> , 2021 , 105-111	6.4	0
639	Understanding the Role of Nanoparticles in PEO-Based Hybrid Polymer Electrolytes for Solid-State Lithium P olymer Batteries. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 27907-27915	3.8	10
638	Structural Effects of Anomalous Current Densities on Manganese Hexacyanoferrate for Li-Ion Batteries. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 7573	2.6	
637	The Role of Batteries for the Successful Transition to Renewable Energy Sources 2020 , 1-9		О
636	Side by Side Battery Technologies with Lithium-Ion Based Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2000089	21.8	64
635	Work Function Evolution in Li Anode Processing. Advanced Energy Materials, 2020, 10, 2000520	21.8	17
634	Magnetic Resonance Imaging and Molecular Dynamics Characterization of Ionic Liquid in Poly(ethylene oxide)-Based Polymer Electrolytes. <i>ACS Applied Materials & Description</i> , 12, 238	08-238	31 1 1
633	Introducing Highly Redox-Active Atomic Centers into Insertion-Type Electrodes for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2000783	21.8	20
632	The Potential Role of Reactive Metals for a Clean Energy Transition. <i>Advanced Energy Materials</i> , 2020 , 10, 2001002	21.8	9
631	Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion. <i>Inorganic Chemistry</i> , 2020 , 59, 7408-7414	5.1	3
630	Evaluation of counter and reference electrodes for the investigation of Ca battery materials. Journal of Power Sources Advances, 2020 , 2, 100008	3.3	6
629	Sodium Induced Morphological Changes of Carbon Coated TiO2 Anatase Nanoparticles - High-Performance Materials for Na-Ion Batteries. <i>MRS Advances</i> , 2020 , 5, 2221-2229	0.7	2
628	Reactive Metals as Energy Storage and Carrier Media: Use of Aluminum for Power Generation in Fuel Cell-Based Power Plants. <i>Energy Technology</i> , 2020 , 8, 2000233	3.5	2
627	Manipulation of Nitrogen-Heteroatom Configuration for Enhanced Charge-Storage Performance and Reliability of Nanoporous Carbon Electrodes. <i>ACS Applied Materials & District Amp; Interfaces</i> , 2020 , 12, 327	99-328	30 ¹ CO
626	High-Voltage Operation of a VO Cathode in a Concentrated Gel Polymer Electrolyte for High-Energy Aqueous Zinc Batteries. <i>ACS Applied Materials & District &</i>	9.5	24
625	Determining Realistic Electrochemical Stability Windows of Electrolytes for Electrical Double-Layer Capacitors. <i>Batteries and Supercaps</i> , 2020 , 3, 698-707	5.6	19
624	Artificial Solid Electrolyte Interphases for Lithium Metal Electrodes by Wet Processing: The Role of Metal Salt Concentration and Solvent Choice. <i>ACS Applied Materials & Empty Interfaces</i> , 2020 , 12, 32851-3	32882	15

623	Alkoxy-functionalized ionic liquid electrolytes: understanding ionic coordination of calcium ion speciation for the rational design of calcium electrolytes. <i>Energy and Environmental Science</i> , 2020 , 13, 2559-2569	35.4	15
622	Influence of Carbonate-Based Additives on the Electrochemical Performance of Si NW Anodes Cycled in an Ionic Liquid Electrolyte. <i>Nano Letters</i> , 2020 , 20, 7011-7019	11.5	9
621	Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. <i>Small</i> , 2020 , 16, e2000279	11	41
620	The Role of Cation Vacancies in Electrode Materials for Enhanced Electrochemical Energy Storage: Synthesis, Advanced Characterization, and Fundamentals. <i>Advanced Energy Materials</i> , 2020 , 10, 190378	0 ^{21.8}	61
619	Co-Crosslinked Water-Soluble Biopolymers as a Binder for High-Voltage LiNi Mn O Graphite Lithium-Ion Full Cells. <i>ChemSusChem</i> , 2020 , 13, 2650-2660	8.3	15
618	High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. <i>Energy Storage Materials</i> , 2020 , 27, 61-68	19.4	28
617	Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. <i>Journal of Power Sources</i> , 2020 , 449, 227594	8.9	29
616	A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids. <i>ChemSusChem</i> , 2020 , 13, 2205-2219	8.3	32
615	Good practice guide for papers on batteries for the Journal of Power Sources. <i>Journal of Power Sources</i> , 2020 , 452, 227824	8.9	15
614	Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries. <i>Energy Storage Materials</i> , 2020 , 30, 196-205	19.4	26
613	Anion exchange membrane electrolyte preserving inverse Ia3?d bicontinuous cubic phase: Effect of microdomain morphology on selective ion transport. <i>Journal of Membrane Science</i> , 2020 , 605, 118113	9.6	8
612	Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives. <i>Advanced Energy Materials</i> , 2020 , 10, 2000093	21.8	107
611	Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. <i>Journal of Power Sources</i> , 2020 , 459, 228073	8.9	59
610	Sodium Biphenyl as Anolyte for SodiumBeawater Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001249	15.6	9
609	Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries. <i>Materials Today</i> , 2020 , 39, 127-136	21.8	19
608	Partially Oxidized Cellulose grafted with Polyethylene Glycol mono-Methyl Ether (m-PEG) as Electrolyte Material for Lithium Polymer Battery. <i>Carbohydrate Polymers</i> , 2020 , 240, 116339	10.3	9
607	Solvent-Dictated Sodium Sulfur Redox Reactions: Investigation of Carbonate and Ether Electrolytes. <i>Energies</i> , 2020 , 13, 836	3.1	13
606	Lattice Compensation to Jahn Teller Distortion in Na-Rich Manganese Hexacyanoferrate for Li-Ion Storage: An Operando Study. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5728-5733	6.1	10

(2020-2020)

605	Deriving Structure-Performance Relations of Chemically Modified Chitosan Binders for Sustainable High-Voltage LiNi0.5Mn1.5O4 Cathodes. <i>Batteries and Supercaps</i> , 2020 , 3, 155-164	5.6	10
604	Highly Reversible Sodiation of Tin in Glyme Electrolytes: The Critical Role of the Solid Electrolyte Interphase and Its Formation Mechanism. <i>ACS Applied Materials & Description of Tin Interphase and Its Formation Mechanism.</i> ACS Applied Materials & Description of Tin Interphase and Its Formation Mechanism.	9.5	14
603	Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1902485	21.8	261
602	Effect of Electrolyte Additives on the LiNi0.5Mn0.3Co0.2O2 Surface Film Formation with Lithium and Graphite Negative Electrodes. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901500	4.6	18
601	Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources. <i>Journal of Power Sources</i> , 2020 , 450, 227636	8.9	21
600	Natural Polymers as Green Binders for High-Loading Supercapacitor Electrodes. <i>ChemSusChem</i> , 2020 , 13, 763-770	8.3	12
599	Unveiling and Amplifying the Benefits of Carbon-Coated Aluminum Current Collectors for Sustainable LiNi0.5Mn1.5O4 Cathodes. <i>ACS Applied Energy Materials</i> , 2020 , 3, 218-230	6.1	13
598	Effect of Water and Alkali-Ion Content on the Structure of Manganese(II) Hexacyanoferrate(II) by a Joint Operando X-ray Absorption Spectroscopy and Chemometric Approach. <i>ChemSusChem</i> , 2020 , 13, 608-615	8.3	9
597	From Solid-Solution Electrodes and the Rocking-Chair Concept to Today's Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 542-546	3.6	12
596	Electrochemical investigations of high-voltage Na4Ni3(PO4)2P2O7 cathode for sodium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2020 , 24, 17-24	2.6	11
595	From Solid-Solution Electrodes and the Rocking-Chair Concept to Today's Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 534-538	16.4	76
594	Highly Concentrated KTFSI: Glyme Electrolytes for K/Bilayered-V2O5 Batteries. <i>Batteries and Supercaps</i> , 2020 , 3, 261-267	5.6	18
593	Ionic liquid electrolytes for high-voltage, lithium-ion batteries. <i>Journal of Power Sources</i> , 2020 , 479, 228	789.1)	33
592	Mechanistic Insights into the Lithiation and Delithiation of Iron-Doped Zinc Oxide: The Nucleation Site Model. <i>ACS Applied Materials & Delithiation</i> , 12, 8206-8218	9.5	12
591	Cathode-Electrolyte Interphase in a LiTFSI/Tetraglyme Electrolyte Promoting the Cyclability of VO. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 54782-54790	9.5	7
590	Reducing Capacity and Voltage Decay of Co-Free Li1.2Ni0.2Mn0.6O2 as Positive Electrode Material for Lithium Batteries Employing an Ionic Liquid-Based Electrolyte. <i>Advanced Energy Materials</i> , 2020 , 10, 2001830	21.8	17
589	Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis. <i>Electrochimica Acta</i> , 2020 , 357, 136838	6.7	23
588	High-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 cathodes. <i>Nano Energy</i> , 2020 , 77, 105129	17.1	42

587	Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteries employing conversion/alloying-type negative electrodes. <i>Journal of Power Sources</i> , 2020 , 473, 228583	8.9	10
586	Halide-free water-in-salt electrolytes for stable aqueous sodium-ion batteries. <i>Nano Energy</i> , 2020 , 77, 105176	17.1	21
585	Metal®rganic Framework Derived Fe7S8 Nanoparticles Embedded in Heteroatom-Doped Carbon with Lithium and Sodium Storage Capability. <i>Small Methods</i> , 2020 , 4, 2000637	12.8	18
584	Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport. <i>Materials Today</i> , 2020 , 41, 304-315	21.8	69
583	Operando pH Measurements Decipher H+/Zn2+ Intercalation Chemistry in High-Performance Aqueous Zn/EV2O5 Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 2979-2986	20.1	58
582	Determination of the Volume Changes Occurring for Conversion/Alloying-Type Li-Ion Anodes upon Lithiation/Delithiation. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 8238-8245	6.4	7
581	Assessment on the Use of High Capacity Bn4P3 NHC Composite Electrodes for Sodium-Ion Batteries with Ether and Carbonate Electrolytes. <i>Advanced Functional Materials</i> , 2020 , 30, 2004798	15.6	27
580	Initial lithiation of carbon-coated zinc ferrite anodes studied by in-situ X-ray absorption spectroscopy. <i>Radiation Physics and Chemistry</i> , 2020 , 175, 108468	2.5	3
579	Highlighting the Reversible Manganese Electroactivity in Na-Rich Manganese Hexacyanoferrate Material for Li- and Na-Ion Storage. <i>Small Methods</i> , 2020 , 4, 1900529	12.8	19
578	Structure rearrangements induced by lithium insertion in metal alloying oxide mixed spinel structure studied by x-ray absorption near-edge spectroscopy. <i>Journal of Physics and Chemistry of Solids</i> , 2020 , 136, 109172	3.9	9
577	Towards Advanced Sodium-Ion Batteries: Green, Low-Cost and High-Capacity Anode Compartment Encompassing Phosphorus/Carbon Nanocomposite as the Active Material and Aluminum as the Current Collector. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 080509	3.9	1
576	Scalable Synthesis of Microsized, Nanocrystalline Zn Fe O-C Secondary Particles and Their Use in Zn Fe O-C/LiNi Mn O Lithium-Ion Full Cells. <i>ChemSusChem</i> , 2020 , 13, 3504-3513	8.3	9
575	Synthesis and Operando Sodiation Mechanistic Study of Nitrogen-Doped Porous Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode. <i>Advanced Energy Materials</i> , 2019 , 9, 1902312	21.8	44
574	Elucidating the Effect of Iron Doping on the Electrochemical Performance of Cobalt-Free Lithium-Rich Layered Cathode Materials. <i>Advanced Energy Materials</i> , 2019 , 9, 1902445	21.8	33
573	Structural Study of Carbon-Coated TiO2 Anatase Nanoparticles as High-Performance Anode Materials for Na-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7142-7151	6.1	10
572	Critical Evaluation of the Use of 3D Carbon Networks Enhancing the Long-Term Stability of Lithium Metal Anodes. <i>Frontiers in Materials</i> , 2019 , 6,	4	2
571	A Comparison of Formation Methods for Graphite//LiFePO4 Cells. <i>Batteries and Supercaps</i> , 2019 , 2, 240-	-3,467	14
570	Asymmetric ammonium-based ionic liquids as electrolyte components for safer, high-energy, electrochemical storage devices. <i>Energy Storage Materials</i> , 2019 , 18, 1-9	19.4	15

569	Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries. <i>Chemical Communications</i> , 2019 , 55, 2265-2268	5.8	76
568	Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 3359-3368	6.4	16
567	Ionic Liquid-Based Electrolytes for Sodium-Ion Batteries: Tuning Properties To Enhance the Electrochemical Performance of Manganese-Based Layered Oxide Cathode. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 22278-22289	9.5	26
566	A Post-Mortem Study of Stacked 16 Ah Graphite//LiFePO4 Pouch Cells Cycled at 5 LC. <i>Batteries</i> , 2019 , 5, 45	5.7	5
565	Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13096-13102	13	16
564	In Situ Investigation of Layered Oxides with Mixed Structures for Sodium-Ion Batteries. <i>Small Methods</i> , 2019 , 3, 1900239	12.8	10
563	Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. <i>Molecular Systems Design and Engineering</i> , 2019 , 4, 779-792	4.6	82
562	Revisiting the Electrochemical Lithiation Mechanism of Aluminum and the Role of Li-rich Phases (Li Al) on Capacity Fading. <i>ChemSusChem</i> , 2019 , 12, 2609-2619	8.3	20
561	Prototype rechargeable magnesium batteries using ionic liquid electrolytes. <i>Journal of Power Sources</i> , 2019 , 423, 52-59	8.9	29
560	A comprehensive insight into the volumetric response of graphite electrodes upon sodium co-intercalation in ether-based electrolytes. <i>Electrochimica Acta</i> , 2019 , 304, 474-486	6.7	16
559	Efficiency and Quality Issues in the Production of Black Phosphorus by Mechanochemical Synthesis: A Multi-Technique Approach. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2794-2802	6.1	11
558	Glyme-Based Electrolyte for Na/Bilayered-V2O5 Batteries. ACS Applied Energy Materials, 2019, 2, 2786-	2893	16
557	Unlocking Simultaneously the Temperature and Electrochemical Windows of Aqueous Phthalocyanine Electrolytes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3773-3779	6.1	15
556	Effect of Aging-Induced Dioxolane Polymerization on the Electrochemistry of Carbon-Coated Lithium Sulfide. <i>Frontiers in Chemistry</i> , 2019 , 7, 893	5	1
555	Study of the Na Storage Mechanism in Silicon Oxycarbide E vidence for Reversible Silicon Redox Activity. <i>Small Methods</i> , 2019 , 3, 1800177	12.8	14
554	Influence of Salt Concentration on the Properties of Sodium-Based Electrolytes. <i>Small Methods</i> , 2019 , 3, 1800208	12.8	27
553	4-V flexible all-solid-state lithium polymer batteries. <i>Nano Energy</i> , 2019 , 64, 103986	17.1	22
552	Concentrated Ionic-Liquid-Based Electrolytes for High-Voltage Lithium Batteries with Improved Performance at Room Temperature. <i>ChemSusChem</i> , 2019 , 12, 4185-4193	8.3	34

551	Toward Stable Electrode/Electrolyte Interface of P2-Layered Oxide for Rechargeable Na-Ion Batteries. <i>ACS Applied Materials & </i>	9.5	24
550	Enhancing the Electrochemical Performance of LiNiCoMnO by VO/LiVO Coating. <i>ACS Applied Materials & Comp.; Interfaces</i> , 2019 , 11, 26994-27003	9.5	24
549	Increased Cycling Performance of Li-Ion Batteries by Phosphoric Acid Modified LiNi0.5Mn1.5O4 Cathodes in the Presence of LiBOB. <i>International Journal of Electrochemistry</i> , 2019 , 2019, 1-7	2.4	10
548	Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries. <i>ACS Nano</i> , 2019 , 13, 9511-9519	16.7	32
547	Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries. <i>Journal of Power Sources</i> , 2019 , 437, 226923	8.9	30
546	Revisiting the Electrochemical Lithiation Mechanism of Aluminum and the Role of Li-rich Phases (Li1+xAl) on Capacity Fading. <i>ChemSusChem</i> , 2019 , 12, 2492-2492	8.3	1
545	Understanding the Electrode/Electrolyte Interface Layer on the Li-Rich Nickel Manganese Cobalt Layered Oxide Cathode by XPS. <i>ACS Applied Materials & District Materials & Company & Compa</i>	9.5	50
544	Composition Modulation of Ionic Liquid Hybrid Electrolyte for 5 V Lithium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 42049-42056	9.5	16
543	Superior Lithium Storage Capacity of EMnS Nanoparticles Embedded in S-Doped Carbonaceous Mesoporous Frameworks. <i>Advanced Energy Materials</i> , 2019 , 9, 1902077	21.8	67
542	High-Power Na-Ion and K-Ion Hybrid Capacitors Exploiting Cointercalation in Graphite Negative Electrodes. <i>ACS Energy Letters</i> , 2019 , 4, 2675-2682	20.1	50
541	A More Sustainable and Cheaper One-Pot Route for the Synthesis of Hydrophobic Ionic Liquids for Electrolyte Applications. <i>ChemSusChem</i> , 2019 , 12, 4946-4952	8.3	6
540	Statistic-Driven Proton Transfer Affecting Nanoscopic Organization in an Ethylammonium Nitrate Ionic Liquid and 1,4-Diaminobutane Binary Mixture: A Steamy Pizza Model. <i>Symmetry</i> , 2019 , 11, 1425	2.7	5
539	Single-Ion Conducting Electrolyte Based on Electrospun Nanofibers for High-Performance Lithium Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803422	21.8	76
538	Amorphous Lithium Sulfide as Lithium-Sulfur Battery Cathode with Low Activation Barrier. <i>Energy Technology</i> , 2019 , 7, 1801013	3.5	9
537	Electrolytes based on N-Butyl-N-Methyl-Pyrrolidinium 4,5-Dicyano-2-(Trifluoromethyl) Imidazole for High Voltage Electrochemical Double Layer Capacitors. <i>ChemElectroChem</i> , 2019 , 6, 552-557	4.3	3
536	Exploring SnS nanoparticles interpenetrated with high concentration nitrogen-doped-carbon as anodes for sodium ion batteries. <i>Electrochimica Acta</i> , 2019 , 296, 806-813	6.7	22
535	Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. <i>Energy Storage Materials</i> , 2019 , 17, 204-210	19.4	81
534	Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. Journal of Power Sources, 2019 , 410-411, 1-9	8.9	56

(2018-2019)

533	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. <i>Materials Today</i> , 2019 , 23, 87-104	21.8	276
532	Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. <i>Nano Energy</i> , 2019 , 55, 327-340	17.1	114
531	Probing the 3-step Lithium Storage Mechanism in CH3NH3PbBr3 Perovskite Electrode by Operando-XRD Analysis. <i>ChemElectroChem</i> , 2019 , 6, 456-460	4.3	14
530	Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. <i>Journal of Power Sources</i> , 2019 , 412, 398-407	8.9	81
529	In-Situ Electrochemical SHINERS Investigation of SEI Composition on Carbon-Coated Zn0.9Fe0.1O Anode for Lithium-Ion Batteries. <i>Batteries and Supercaps</i> , 2019 , 2, 168-177	5.6	17
528	Enabling Reversible (De)Lithiation of Aluminum by using Bis(fluorosulfonyl)imide-Based Electrolytes. <i>ChemSusChem</i> , 2019 , 12, 208-212	8.3	12
527	Large-scale stationary energy storage: Seawater batteries with high rate and reversible performance. <i>Energy Storage Materials</i> , 2019 , 16, 56-64	19.4	29
526	Evaluation of guar gum-based biopolymers as binders for lithium-ion batteries electrodes. <i>Electrochimica Acta</i> , 2018 , 265, 89-97	6.7	32
525	Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na VTi(PO) using Concentrated Electrolytes. <i>ChemSusChem</i> , 2018 , 11, 1382-1389	8.3	58
524	High energy and high voltage integrated photo-electrochemical double layer capacitor. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 968-977	5.8	16
523	All-solid-state lithium-ion and lithium metal batteries [baving the way to large-scale production. Journal of Power Sources, 2018 , 382, 160-175	8.9	275
522	Water decontamination by polyoxometalate-functionalized 3D-printed hierarchical porous devices. <i>Chemical Communications</i> , 2018 , 54, 3018-3021	5.8	9
521	Addressing the energy sustainability of biowaste-derived hard carbon materials for battery electrodes. <i>Green Chemistry</i> , 2018 , 20, 1527-1537	10	22
520	Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. <i>Journal of Power Sources</i> , 2018 , 382, 176-178	8.9	124
519	Dielectric spectroscopy of Pyr14TFSI and Pyr12O1TFSI ionic liquids. <i>Electrochimica Acta</i> , 2018 , 274, 400-	-460 ₇ 5	1
518	Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries. <i>APL Materials</i> , 2018 , 6, 047501	5.7	18
517	Electrochemical and structural investigation of transition metal doped V2O5 sono-aerogel cathodes for lithium metal batteries. <i>Solid State Ionics</i> , 2018 , 319, 46-52	3.3	11
516	Beyond Insertion for Na-Ion Batteries: Nanostructured Alloying and Conversion Anode Materials. <i>Advanced Energy Materials</i> , 2018 , 8, 1702582	21.8	173

515	One-dimensional nanomaterials for energy storage. Journal Physics D: Applied Physics, 2018, 51, 113002	3	36
514	Communication: Investigation of ion aggregation in ionic liquids and their solutions with lithium salt under high pressure. <i>Journal of Chemical Physics</i> , 2018 , 148, 031102	3.9	14
513	Connection between Lithium Coordination and Lithium Diffusion in [Pyr][FTFSI] Ionic Liquid Electrolytes. <i>ChemSusChem</i> , 2018 , 11, 1981-1989	8.3	33
512	Optimized hard carbon derived from starch for rechargeable seawater batteries. <i>Carbon</i> , 2018 , 129, 56	4-557.4	36
511	Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?. <i>Journal of Power Sources</i> , 2018 , 383, 157-163	8.9	15
510	A multiple electrolyte concept for lithium-metal batteries. <i>Solid State Ionics</i> , 2018 , 316, 66-74	3.3	12
509	Lithium Polymer Electrolytes and Batteries. Series on Chemistry, Energy and the Environment, 2018, 319-	364	1
508	Comparative Analysis of Aqueous Binders for High-Energy Li-Rich NMC as a Lithium-Ion Cathode and the Impact of Adding Phosphoric Acid. <i>ACS Applied Materials & District Acid</i> , 10, 17214-172	2 9·5	35
507	Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. <i>Electrochimica Acta</i> , 2018 , 277, 100-109	6.7	29
506	Non-aqueous potassium-ion batteries: a review. <i>Current Opinion in Electrochemistry</i> , 2018 , 9, 41-48	7.2	88
505	Relevance of ion clusters for Li transport at elevated salt concentrations in [Pyr][FTFSI] ionic liquid-based electrolytes. <i>Chemical Communications</i> , 2018 , 54, 4278-4281	5.8	39
504	A cost and resource analysis of sodium-ion batteries. <i>Nature Reviews Materials</i> , 2018 , 3,	73.3	886
503	On the interaction of carbon electrodes and non conventional electrolytes in high-voltage electrochemical capacitors. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 717-725	2.6	8
502	Low-Polarization Lithium-Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte. <i>ChemSusChem</i> , 2018 , 11, 229-236	8.3	24
501	3D Porous Cu Z n Alloys as Alternative Anode Materials for Li-Ion Batteries with Superior Low T Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1701706	21.8	57
500	Aqueous/Nonaqueous Hybrid Electrolyte for Sodium-Ion Batteries. ACS Energy Letters, 2018, 3, 1769-17	720 .1	56
499	MnPO4-Coated Li(Ni0.4Co0.2Mn0.4)O2 for Lithium(-Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics. <i>Advanced Energy Materials</i> , 2018 , 8, 1801573	21.8	64
498	Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries. <i>Membranes</i> , 2018 , 8,	3.8	17

497	High Capacity All-Solid-State Lithium Batteries Enabled by Pyrite-Sulfur Composites. <i>Advanced Energy Materials</i> , 2018 , 8, 1801462	21.8	60
496	Hybrid electrolytes for lithium metal batteries. <i>Journal of Power Sources</i> , 2018 , 392, 206-225	8.9	125
495	Insights into the Structure and Transport of the Lithium, Sodium, Magnesium, and Zinc Bis(trifluoromethansulfonyl)imide Salts in Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 2010	8 ²⁻² 012	2†¹
494	Sodium-Ion Batteries: Beyond Insertion for Na-Ion Batteries: Nanostructured Alloying and Conversion Anode Materials (Adv. Energy Mater. 17/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870082	21.8	27
493	Complementary Strategies Toward the Aqueous Processing of High-Voltage LiNi Mn O Lithium-Ion Cathodes. <i>ChemSusChem</i> , 2018 , 11, 562-573	8.3	49
492	New Electrode and Electrolyte Configurations for Lithium-Oxygen Battery. <i>Chemistry - A European Journal</i> , 2018 , 24, 3178-3185	4.8	9
491	Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries. <i>Journal of Power Sources</i> , 2018 , 375, 43-52	8.9	90
490	Alternative binders for sustainable electrochemical energy storage Ithe transition to aqueous electrode processing and bio-derived polymers. <i>Energy and Environmental Science</i> , 2018 , 11, 3096-3127	35.4	234
489	Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: Towards superior cycling stability at elevated temperature and high voltage. <i>Journal of Power Sources</i> , 2018 , 402, 263-271	8.9	69
488	Conversion/alloying lithium-ion anodes Lenhancing the energy density by transition metal doping. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 2601-2608	5.8	34
487	High-Efficiency Sodium-Ion Battery Based on NASICON Electrodes with High Power and Long Lifespan. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6425-6432	6.1	13
486	High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis. <i>Batteries</i> , 2018 , 4, 8	5.7	12
485	Portable High Voltage Integrated Harvesting-Storage Device Employing Dye-Sensitized Solar Module and All-Solid-State Electrochemical Double Layer Capacitor. <i>Frontiers in Chemistry</i> , 2018 , 6, 443	5	13
484	Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries. <i>ChemSusChem</i> , 2018 , 11, 3704-3707	8.3	56
483	Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries. <i>Journal of Power Sources</i> , 2018 , 397, 79-86	8.9	25
482	Role Platinum Nanoparticles Play in the Kinetic Mechanism of Oxygen Reduction Reaction in Nonaqueous Solvents. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 15826-15834	3.8	5
481	Cobalt Disulfide Nanoparticles Embedded in Porous Carbonaceous Micro-Polyhedrons Interlinked by Carbon Nanotubes for Superior Lithium and Sodium Storage. <i>ACS Nano</i> , 2018 , 12, 7220-7231	16.7	158
480	Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes. <i>ChemSusChem</i> , 2018 , 11, 3276-3285	8.3	31

479	Dendrite Growth in Mg Metal Cells Containing Mg(TFSI)2/Glyme Electrolytes. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1983-A1990	3.9	69
478	How much does size really matter? Exploring the limits of graphene as Li ion battery anode material. <i>Solid State Communications</i> , 2017 , 251, 88-93	1.6	25
477	Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries?. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 4570-4576	9.5	66
476	Toward high energy density cathode materials for sodium-ion batteries: investigating the beneficial effect of aluminum doping on the P2-type structure. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4467-447	1 3	83
475	Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 Cathodes Enabled by Nitrogen-Doped Carbon Interpenetration for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2017 , 4, 1256-12	. 63 ³	27
474	Physicochemical and electrochemical investigations of the ionic liquid N-butyl -N-methyl-pyrrolidinium 4,5-dicyano-2-(trifluoromethyl)imidazole. <i>Electrochimica Acta</i> , 2017 , 232, 586-5	9 57	5
473	The impact of mixtures of protic ionic liquids on the operative temperature range of use of battery systems. <i>Electrochemistry Communications</i> , 2017 , 78, 47-50	5.1	13
472	Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. <i>Journal of Power Sources</i> , 2017 , 353, 287-297	8.9	116
471	Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries. <i>ChemSusChem</i> , 2017 , 10, 2668-2676	8.3	97
47°	Insights into the reversibility of aluminum graphite batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9682-9690	13	84
469	The Effect of 1-Pentylamine as Solid Electrolyte Interphase Precursor on Lithium Metal Anodes. <i>Electrochimica Acta</i> , 2017 , 240, 408-414	6.7	16
468	Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. <i>Nano Research</i> , 2017 , 10, 3942-3969	10	63
467	Radical Decomposition of Ether-Based Electrolytes for Li-S Batteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A1812-A1819	3.9	18
466	Comprehensive Insights into the Thermal Stability, Biodegradability, and Combustion Chemistry of Pyrrolidinium-Based Ionic Liquids. <i>ChemSusChem</i> , 2017 , 10, 3146-3159	8.3	37
465	Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes. <i>ACS Nano</i> , 2017 , 11, 5933-5943	16.7	54
464	Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries. <i>NPG Asia Materials</i> , 2017 , 9, e370-e370	10.3	38
463	Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance. <i>Journal of Power Sources</i> , 2017 , 342, 335-341	8.9	32
462	Physical@hemical Characterization of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis{(trifluoromethyl)sulfonyl}imide and Aliphatic Nitrile Solvents as Potential Electrolytes for Electrochemical Energy Storage Applications. Journal of Chemical & Danner Engineering Data, 2017, 62, 376	2.8 5- 390	29

461	Graphene/V2O5 Cryogel Composite As a High-Energy Cathode Material For Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2017 , 4, 613-619	4.3	12
460	Critical Insight into the Relentless Progression Toward Graphene and Graphene-Containing Materials for Lithium-Ion Battery Anodes. <i>Advanced Materials</i> , 2017 , 29, 1603421	24	107
459	Cyano Ester as Solvent for High Voltage Electrochemical Double Layer Capacitors. <i>Electrochimica Acta</i> , 2017 , 224, 278-284	6.7	20
458	From Nanoscale to Microscale: Crossover in the Diffusion Dynamics within Two Pyrrolidinium-Based Ionic Liquids. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5196-5202	6.4	21
457	Structural and Electrochemical Characterization of ZnFeO-Effect of Aliovalent Doping on the Li+Storage Mechanism. <i>Materials</i> , 2017 , 11,	3.5	19
456	Effects of nitrogen doping on the structure and performance of carbon coated Na3V2(PO4)3 cathodes for sodium-ion batteries. <i>Carbon</i> , 2017 , 124, 334-341	10.4	35
455	Aqueous Processing of NaMnO Cathode Material for the Development of Greener Na-Ion Batteries. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	51
454	Aging of ceramic coated graphitic negative and NCA positive electrodes in commercial lithium-ion battery cells IAn ex-situ study of different states of health for identification and quantification of aging influencing parameters. <i>Journal of Energy Storage</i> , 2017 , 13, 304-312	7.8	5
453	Ultrafast Ionic Liquid-Assisted Microwave Synthesis of SnO Microflowers and Their Superior Sodium-Ion Storage Performance. <i>ACS Applied Materials & District Materials & District</i>	9.5	23
452	Performance and Ageing Robustness of Graphite/NMC Pouch Prototypes Manufactured through Eco-Friendly Materials and Processes. <i>ChemSusChem</i> , 2017 , 10, 3581-3587	8.3	10
451	Beneficial effect of boron in layered sodium-ion cathode materials The example of Na 2/3 B 0.11 Mn 0.89 O 2. <i>Journal of Power Sources</i> , 2017 , 364, 33-40	8.9	20
450	Influence of electrochemical cycling on the rheo-impedance of anolytes for Li-based Semi Solid Flow Batteries. <i>Electrochimica Acta</i> , 2017 , 251, 388-395	6.7	14
449	Manganese silicate hollow spheres enclosed in reduced graphene oxide as anode for lithium-ion batteries. <i>Electrochimica Acta</i> , 2017 , 258, 535-543	6.7	42
448	ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries. <i>Nano Energy</i> , 2017 , 42, 341-352	17.1	71
447	SEI Dynamics in Metal Oxide Conversion Electrodes of Li-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 26379-26388	3.8	36
446	Toward greener lithium-ion batteries: Aqueous binder-based LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance. <i>Journal of Power Sources</i> , 2017 , 372, 180-187	8.9	44
445	1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15669-15675	13	43
444	The Role of Ionic Liquid in Oxygen Reduction Reaction for Lithium-air Batteries. <i>Electrochimica Acta</i> , 2017 , 247, 610-616	6.7	10

443	Characterization of Different Conductive Salts in ACN-Based Electrolytes for Electrochemical Double-Layer Capacitors. <i>ChemElectroChem</i> , 2017 , 4, 353-361	4.3	29
442	Novel Ternary Polymer Electrolytes Based on Poly(lactic acid) from Sustainable Sources. <i>ChemElectroChem</i> , 2017 , 4, 463-467	4.3	11
441	Graphite//LiNi Mn O Cells Based on Environmentally Friendly Made-in-Water Electrodes. <i>ChemSusChem</i> , 2017 , 10, 379-386	8.3	21
440	Ionic Liquid Electrolytes for Safer Lithium Batteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A6026-A6031	3.9	90
439	Iron-Doped ZnO for Lithium-Ion Anodes: Impact of the Dopant Ratio and Carbon Coating Content. Journal of the Electrochemical Society, 2017 , 164, A6123-A6130	3.9	17
438	Evaluation of Carbon-Coated Graphite as a Negative Electrode Material for Li-Ion Batteries. <i>Journal of Carbon Research</i> , 2017 , 3, 22	3.3	13
437	Synthesis, Structure, and Sodium Mobility of Sodium Vanadium Nitridophosphate: A Zero-Strain and Safe High Voltage Cathode Material for Sodium-Ion Batteries. <i>Energies</i> , 2017 , 10, 889	3.1	21
436	Growth mechanism and electrochemical properties of hierarchical hollow SnO2 microspheres with a Thestnut Imorphology. <i>CrystEngComm</i> , 2017 , 19, 6454-6463	3.3	7
435	Development and Characterization of High-Performance Sodium-Ion Cells based on Layered Oxide and Hard Carbon. <i>ChemElectroChem</i> , 2016 , 3, 1030-1030	4.3	3
434	Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. <i>Energy and Environmental Science</i> , 2016 , 9, 3210-3220	35.4	108
433	Bilayered Nanostructured V2O5[hH2O for Metal Batteries. Advanced Energy Materials, 2016, 6, 160086	821.8	101
432	Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. <i>Energy and Environmental Science</i> , 2016 , 9, 3348-3367	35.4	153
431	Towards Li(Ni0.33Mn0.33Co0.33)O2/graphite batteries with ionic liquid-based electrolytes. I. Electrodes' behavior in lithium half-cells. <i>Journal of Power Sources</i> , 2016 , 331, 426-434	8.9	18
430	An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors. <i>Journal of Power Sources</i> , 2016 , 326, 549-559	8.9	22
429	An Overview and Future Perspectives of Aluminum Batteries. <i>Advanced Materials</i> , 2016 , 28, 7564-79	24	470
428	The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide and aliphatic nitrile solvents as electrolyte for supercapacitors. <i>Electrochimica Acta</i> , 2016 , 220, 146-155	6.7	37
427	Ionic liquids and their solid-state analogues as materials for energy generation and storage. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	391
426	Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. Journal of Power Sources, 2016, 336, 419-426	8.9	26

(2016-2016)

425	Boosting the power performance of multilayer graphene as lithium-ion battery anode via unconventional doping with in-situ formed Fe nanoparticles. <i>Scientific Reports</i> , 2016 , 6, 23585	4.9	30
424	Local structure modification in lithium rich layered Li-Mn-O cathode material. <i>Journal of Physics:</i> Conference Series, 2016 , 712, 012130	0.3	1
423	Enhanced Cycling Ability of V2O5 Aerogel using Room-Temperature Ionic Liquid-Based Electrolytes. <i>ChemElectroChem</i> , 2016 , 3, 1048-1053	4.3	6
422	Electrochemical Study of a CuOtarbon Conversion Anode in Ionic Liquid Electrolyte for Application in Li-Ion Batteries. <i>Energy Technology</i> , 2016 , 4, 700-705	3.5	9
421	Apple-Biowaste-Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries. <i>ChemElectroChem</i> , 2016 , 3, 292-298	4.3	162
420	A Lithium-Ion Battery with Enhanced Safety Prepared using an Environmentally Friendly Process. <i>ChemSusChem</i> , 2016 , 9, 1290-8	8.3	15
419	Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries. <i>Journal of Colloid and Interface Science</i> , 2016 , 478, 155-63	9.3	14
418	The use of protic ionic liquids with cathodes for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10472-10478	13	40
417	Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2and Hard Carbon/Carbon Black. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1295-A1299	3.9	291
416	Understanding problems of lithiated anodes in lithium oxygen full-cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10467-10471	13	22
415	Beneficial effect of propane sultone and tris(trimethylsilyl) borate as electrolyte additives on the cycling stability of the lithium rich nickel manganese cobalt (NMC) oxide. <i>Journal of Power Sources</i> , 2016 , 325, 525-533	8.9	35
414	Rational design of new electrolyte materials for electrochemical double layer capacitors. <i>Journal of Power Sources</i> , 2016 , 326, 541-548	8.9	54
413	Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors. <i>ACS Applied Materials & District Materials & Dist</i>	9.5	193
412	Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. <i>NPG Asia Materials</i> , 2016 , 8, e270-e270	10.3	39
411	In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes. <i>ACS Applied Materials & Description of Lithium-Imidazole</i> , 8, 16087-100	9.5	111
410	Quaternary Polymer Electrolytes Containing an Ionic Liquid and a Ceramic Filler. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1188-93	4.8	6
409	Life cycle assessment of sodium-ion batteries. Energy and Environmental Science, 2016, 9, 1744-1751	35.4	151
408	Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte. <i>ChemSusChem</i> , 2016 , 9, 2-2	8.3	1

407	Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte. <i>ChemSusChem</i> , 2016 , 9, 42-5	8.3	30
406	Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors' electrodes. <i>Journal of Power Sources</i> , 2016 , 326, 672-679	8.9	18
405	In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries - investigation of SEI growth. <i>Chemical Communications</i> , 2016 , 52, 3970-3	5.8	54
404	Local Structure and Stability of SEI in Graphite and ZFO Electrodes Probed by As K-Edge Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 4287-4295	3.8	18
403	A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. <i>Journal of Power Sources</i> , 2016 , 310, 26-31	8.9	118
402	Ionic liquids as tailored media for the synthesis and processing of energy conversion materials. <i>Energy and Environmental Science</i> , 2016 , 9, 49-61	35.4	87
401	Microporous carbonaceous materials prepared from biowaste for supercapacitor application. <i>Electrochimica Acta</i> , 2016 , 206, 452-457	6.7	26
400	Characteristics of an ionic liquid electrolyte for sodium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 303, 203-207	8.9	77
399	Synthesis and characterization of carbon coated sponge-like tin oxide (SnOx) films and their application as electrode materials in lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 612	2-519	31
398	Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry: a DFT study of lithium titanate spinel surfaces. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17180-17192	13	16
397	Study of Water-Based Lithium Titanate Electrode Processing: The Role of pH and Binder Molecular Structure. <i>Polymers</i> , 2016 , 8,	4.5	32
396	Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors. <i>Sensors</i> , 2016 , 16,	3.8	68
395	Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries. <i>ChemSusChem</i> , 2016 , 9, 1804-13	8.3	4
394	Polymerelektrolyte auf Basis ionischer Fl\(\bar{B}\)sigkeiten f\(\bar{B}\) Batterieanwendungen. <i>Angewandte Chemie</i> , 2016 , 128, 510-523	3.6	31
393	Development and Characterization of High-Performance Sodium-Ion Cells based on Layered Oxide and Hard Carbon. <i>ChemElectroChem</i> , 2016 , 3, 1124-1132	4.3	21
392	In Situ Coating of Li[Ni0.33 Mn0.33 Co0.33]O2 Particles to Enable Aqueous Electrode Processing. <i>ChemSusChem</i> , 2016 , 9, 1112-7	8.3	53
391	Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 500-13	16.4	490
390	Influence of oligo(ethylene oxide) substituents on pyrrolidinium-based ionic liquid properties, Li(+) solvation and transport. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 21539-47	3.6	23

(2015-2016)

389	Elucidating the Impact of Cobalt Doping on the Lithium Storage Mechanism in Conversion/Alloying-Type Zinc Oxide Anodes. <i>ChemElectroChem</i> , 2016 , 3, 1311-1319	4.3	31
388	A 4 Farad high energy electrochemical double layer capacitor prototype operating at 3.2 V (IES prototype). <i>Journal of Power Sources</i> , 2016 , 326, 162-169	8.9	15
387	A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution. <i>Chemistry - A European Journal</i> , 2016 , 22, 6808-14	4.8	42
386	Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions. <i>ChemSusChem</i> , 2016 , 9, 462-71	8.3	112
385	Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases. <i>Advanced Energy Materials</i> , 2016 , 6, 1501555	21.8	117
384	The Influence of Cation Structure on the Chemical Physical Properties of Protic Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 8525-8533	3.8	27
383	Extraordinary Performance of Carbon-Coated Anatase TiO as Sodium-Ion Anode. <i>Advanced Energy Materials</i> , 2016 , 6, 1501489	21.8	174
382	Li/air Flow Battery Employing Ionic Liquid Electrolytes. <i>Energy Technology</i> , 2016 , 4, 85-89	3.5	12
381	Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 203, 109-116	6.7	25
380	Lithium and Lithium-Ion Batteries: Challenges and Prospects. <i>Electrochemical Society Interface</i> , 2016 , 25, 85-87	3.6	25
379	Effect of coatings on the green electrode processing and cycling behaviour of LiCoPO4. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17121-17128	13	24
378	Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17251-17259	13	202
377	Lithium- and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600906	21.8	177
376	Graphene derived carbon confined sulfur cathodes for lithium-sulfur batteries: Electrochemical impedance studies. <i>Electrochimica Acta</i> , 2016 , 214, 129-138	6.7	35
375	Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type Na(x)Ni(0.22)Co(0.11)Mn(0.66)O(2)-NaTi2(PO4)3. <i>Chemical Communications</i> , 2015 , 51, 7298-301	5.8	44
374	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage:: current cell materials and components 2015 , 125-211		7
373	Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 7, 5950-8	9.5	81
372	Mg-doping for improved long-term cyclability of layered Na-ion cathode materials The example of P2-type NaxMg0.11Mn0.89O2. <i>Journal of Power Sources</i> , 2015 , 282, 581-585	8.9	95

371	A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 5206-12	9.5	133
370	Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance. <i>Journal of Power Sources</i> , 2015 , 294, 406-413	8.9	10
369	Multiple points of view of heteronuclear NOE: Long range vs short range contacts in pyrrolidinium based ionic liquids in the presence of Li salts. <i>Journal of Molecular Liquids</i> , 2015 , 210, 215-222	6	19
368	D ouble-Salt E lectrolytes for High Voltage Electrochemical Double-Layer Capacitors. <i>Journal of Solution Chemistry</i> , 2015 , 44, 528-537	1.8	10
367	Electrolytes for rechargeable lithium batteries 2015 , 73-116		5
366	Scaling up NanoILi4Ti5O12for High-Power Lithium-Ion Anodes Using Large Scale Flame Spray Pyrolysis. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2331-A2338	3.9	28
365	Interphase Evolution of a Lithium-Ion/Oxygen Battery. <i>ACS Applied Materials & Discourse (Control of Applied Materials & Discours)</i> , 7, 22638-43	9.5	46
364	Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries. <i>Electrochimica Acta</i> , 2015 , 180, 795-800	6.7	11
363	Insights into the effect of iron and cobalt doping on the structure of nanosized ZnO. <i>Inorganic Chemistry</i> , 2015 , 54, 9393-400	5.1	29
362	Polyurethane Binder for Aqueous Processing of Li-Ion Battery Electrodes. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2692-A2698	3.9	41
361	Aging of Cations of Ionic Liquids Monitored by Ion Chromatography hyphenated to an Electrospray Ionization Mass Spectrometer. <i>Electrochimica Acta</i> , 2015 , 176, 1143-1152	6.7	21
360	Exploring the Low Voltage Behavior of V2O5Aerogel as Intercalation Host for Sodium Ion Battery. Journal of the Electrochemical Society, 2015 , 162, A2723-A2728	3.9	43
359	(Sub)surface-Promoted Disproportionation and Absolute Band Alignment in High-Power LiMn2O4 Cathodes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 21358-21368	3.8	23
358	Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes. <i>Journal of Power Sources</i> , 2015 , 296, 150-161	8.9	49
357	Fluorinated Carbamates as Suitable Solvents for LiTFSI-Based Lithium-Ion Electrolytes: Physicochemical Properties and Electrochemical Characterization. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 22404-22414	3.8	19
356	Ionic liquid assisted solid-state synthesis of lithium iron oxide nanoparticles for rechargeable lithium ion batteries. <i>Solid State Ionics</i> , 2015 , 280, 37-43	3.3	6
355	Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 299, 398-402	8.9	83
354	The lithium/air battery: still an emerging system or a practical reality?. <i>Advanced Materials</i> , 2015 , 27, 784-800	24	471

353	The role of graphene for electrochemical energy storage. <i>Nature Materials</i> , 2015 , 14, 271-9	27	1882
352	Ionic liquid mixtures with tunable physicochemical properties. <i>Electrochimica Acta</i> , 2015 , 151, 599-608	6.7	28
351	Activated Carbon, Carbon Blacks and Graphene Based Nanoplatelets as Active Materials for Electrochemical Double Layer Capacitors: A Comparative Study. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A44-A51	3.9	30
350	X-ray Absorption Spectroscopy Investigation of Lithium-Rich, Cobalt-Poor Layered-Oxide Cathode Material with High Capacity. <i>ChemElectroChem</i> , 2015 , 2, 85-97	4.3	51
349	Performance and kinetics of LiFePO4Darbon bi-material electrodes for hybrid devices: A comparative study between activated carbon and multi-walled carbon nanotubes. <i>Journal of Power Sources</i> , 2015 , 273, 1016-1022	8.9	33
348	Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles. <i>Advanced Energy Materials</i> , 2015 , 5, 1401142	21.8	255
347	SEI Growth and Depth Profiling on ZFO Electrodes by Soft X-Ray Absorption Spectroscopy. <i>Advanced Energy Materials</i> , 2015 , 5, 1500642	21.8	30
346	Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. <i>ChemSusChem</i> , 2015 , 8, 2154-75	8.3	474
345	Improved Performance of VOx-Coated Li-Rich NMC Electrodes. <i>ChemElectroChem</i> , 2015 , 2, 1768-1773	4.3	19
344	High Temperature Stable Separator for Lithium Batteries Based on SiOland Hydroxypropyl Guar Gum. <i>Membranes</i> , 2015 , 5, 632-45	3.8	23
343	A rechargeable sodium-ion battery using a nanostructured Sb L anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. <i>RSC Advances</i> , 2015 , 5, 48928-48934	3.7	49
342	V2O5 electrodes with extended cycling ability and improved rate performance using polyacrylic acid as binder. <i>Journal of Power Sources</i> , 2015 , 293, 1068-1072	8.9	9
341	High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids. <i>Journal of Power Sources</i> , 2015 , 293, 65-70	8.9	61
340	GREENLION Project: Advanced Manufacturing Processes for Low Cost Greener Li-Ion Batteries. <i>Lecture Notes in Mobility</i> , 2015 , 45-60	0.5	1
339	Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder. <i>Journal of Power Sources</i> , 2015 , 300, 216-222	8.9	22
338	Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities. <i>Johnson Matthey Technology Review</i> , 2015 , 59, 34-44	2.5	57
337	Carbon-Coated Anatase TiO2Nanotubes for Li- and Na-Ion Anodes. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A3013-A3020	3.9	71
336	Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A3052-A3058	3.9	93

335	Enhanced low-temperature lithium storage performance of multilayer graphene made through an improved ionic liquid-assisted synthesis. <i>Journal of Power Sources</i> , 2015 , 281, 318-325	8.9	40
334	Ternary polymer electrolytes incorporating pyrrolidinium-imide ionic liquids. <i>RSC Advances</i> , 2015 , 5, 13	35 <u>9</u> 8 - 13	6 96
333	Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1075-82	4.8	27
332	V2O5 Aerogel as a Versatile Cathode Material for Lithium and Sodium Batteries. <i>ChemElectroChem</i> , 2015 , 2, 529-537	4.3	62
331	Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries. <i>Electrochimica Acta</i> , 2015 , 161, 159-170	6.7	21
330	Crystalline Complexes of Pyr12O1TFSI-Based Ionic Liquid Electrolytes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5878-5887	3.8	10
329	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage 2015 , 213-289		4
328	Anatase TiO2 nanoparticles for high power sodium-ion anodes. <i>Journal of Power Sources</i> , 2014 , 251, 37	79&85	257
327	Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods. <i>Progress in Solid State Chemistry</i> , 2014 , 42, 65-84	8	159
326	Challenges of "going nano": enhanced electrochemical performance of cobalt oxide nanoparticles by carbothermal reduction and in situ carbon coating. <i>ChemPhysChem</i> , 2014 , 15, 2177-85	3.2	34
325	Enabling aqueous binders for lithium battery cathodes © arbon coating of aluminum current collector. <i>Journal of Power Sources</i> , 2014 , 248, 1000-1006	8.9	104
324	An advanced lithium-air battery exploiting an ionic liquid-based electrolyte. <i>Nano Letters</i> , 2014 , 14, 65	72 1 7.5	178
323	Probing Lithiation Kinetics of Carbon-Coated ZnFe2O4 Nanoparticle Battery Anodes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 6069-6076	3.8	59
322	A new, high energy Sn-C/Li[Li(0.2)Ni(0.4)/3Co(0.4)/3Mn(1.6/3)]O2 lithium-ion battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 12956-61	9.5	30
321	Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13415-13421	13	133
320	Mechanisms of Magnesium Ion Transport in Pyrrolidinium Bis(trifluoromethanesulfonyl)imide-Based Ionic Liquid Electrolytes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 28361-28368	3.8	21
319	Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. <i>ChemSusChem</i> , 2014 , 7, 2939-46	8.3	57
318	Improved lithium-metal/vanadium pentoxide polymer battery incorporating crosslinked ternary polymer electrolyte with N-butyl-N-methylpyrrolidinium bis(perfluoromethanesulfonyl)imide. Journal of Power Sources, 2014, 271, 334-341	8.9	18

317	ZnFeO-C/LiFePO-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance. <i>Advanced Energy Materials</i> , 2014 , 4, 1-9	21.8	186	
316	Li-doped N-methoxyethyl-N-methylpyrrolidinium fluorosulfonyl-(trifluoromethanesulfonyl)imide as electrolyte for reliable lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 269, 645-650	8.9	18	
315	On the development of activated carbons with high affinity for high voltage propylene carbonate based electrolytes. <i>Journal of Power Sources</i> , 2014 , 270, 379-385	8.9	9	
314	Energy storage materials synthesized from ionic liquids. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13342-59	16.4	198	
313	High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1400083	21.8	182	
312	Cobalt orthosilicate as a new electrode material for secondary lithium-ion batteries. <i>Dalton Transactions</i> , 2014 , 43, 15013-21	4.3	49	
311	Complex Nature of Ionic Coordination in Magnesium Ionic Liquid-Based Electrolytes: Solvates with Mobile Mg2+ Cations. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 9966-9973	3.8	96	
310	Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries. <i>Journal of Power Sources</i> , 2014 , 248, 852-860	8.9	14	
309	Thermal Aging of Anions in Ionic Liquids containing Lithium Salts by IC/ESI-MS. <i>Electrochimica Acta</i> , 2014 , 130, 426-430	6.7	19	
308	A combined theoretical and experimental study of the influence of different anion ratios on lithium ion dynamics in ionic liquids. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 7367-75	3.4	74	
307	Spin-polarized electron transfer in ferromagnet/C60 interfaces. <i>Physical Review B</i> , 2014 , 90,	3.3	46	
306	Synthesis of LiMn2O4 with Outstanding Lithium-Insertion Kinetics and Long-Term Stability. <i>ChemElectroChem</i> , 2014 , 1, 1537-1542	4.3	7	
305	Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. <i>Electrochimica Acta</i> , 2014 , 128, 163-171	6.7	74	
304	Unexpected performance of layered sodium-ion cathode material inlionic liquid-based electrolyte. <i>Journal of Power Sources</i> , 2014 , 247, 377-383	8.9	113	
303	Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder. <i>Journal of Power Sources</i> , 2014 , 248, 915-922	8.9	87	
302	Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes. <i>Journal of Power Sources</i> , 2014 , 245, 836-840	8.9	44	
301	Anodic stability of aluminum current collectors in an ionic liquid based on the (fluorosulfonyl)(trifluoromethanesulfonyl)imide anion and its implication on high voltage supercapacitors. <i>Electrochemistry Communications</i> , 2014 , 38, 117-119	5.1	27	
300	Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors. <i>Journal of Power Sources</i> , 2014 , 266, 250-258	8.9	47	

299	Natural Cellulose: A Green Alternative Binder for High Voltage Electrochemical Double Layer Capacitors Containing Ionic Liquid-Based Electrolytes. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A368-A375	3.9	49
298	Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4IV-class cathode active materials. <i>Journal of Power Sources</i> , 2014 , 246, 846-857	8.9	76
297	Aus ionischen Fl\(\text{S} \) sigkeiten hergestellte Materialien f\(\text{I} \) die Energiespeicherung. <i>Angewandte Chemie</i> , 2014 , 126, 13558-13576	3.6	25
296	Ionic liquid electrolytes for Li-air batteries: lithium metal cycling. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 8122-37	6.3	59
295	Separators for Li-ion and Li-metal battery including ionic liquid based electrolytes based on the TFSI- and FSI- anions. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 14868-90	6.3	42
294	Lithium-Ion Cell Nail Penetration Safety Experiments under Adiabatic Conditions. <i>ECS Transactions</i> , 2014 , 61, 87-103	1	13
293	Pyrrolidinium-based ionic liquids doped with lithium salts: how does Li(+) coordination affect its diffusivity?. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 13679-88	3.4	57
292	Lithium-Ion Batteries: ZnFe2O4-C/LiFePO4-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance (Adv. Energy Mater. 10/2014). <i>Advanced Energy Materials</i> , 2014 , 4, n/a-n	/a ^{21.8}	5
291	Rechargeable-hybrid-seawater fuel cell. NPG Asia Materials, 2014, 6, e144-e144	10.3	55
290	P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20263-20270	13	62
289	Ionic Liquid-based Electrolytes for Li Metal/Air Batteries: A Review of Materials and the New 'LABOHR' Flow Cell Concept. <i>Journal of Electrochemical Science and Technology</i> , 2014 , 5, 37-44	3.2	19
288	Toward more environmentally friendly routes to high purity ionic liquids. MRS Bulletin, 2013 , 38, 540-54	173.2	11
287	Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte. <i>Journal of Power Sources</i> , 2013 , 242, 832-837	8.9	98
286	P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries. <i>Electrochimica Acta</i> , 2013 , 110, 208-213	6.7	83
285	Asymmetry effect of novel per(fluoroalkylsulfonyl)imide anions in pyrrolidinium ionic liquids. <i>RSC Advances</i> , 2013 , 3, 17755	3.7	14
284	On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material. <i>Journal of Power Sources</i> , 2013 , 238, 388-394	8.9	107
283	Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 LiNio.4Mn1.6O4 cathodes. <i>Journal of Power Sources</i> , 2013 , 236, 39-46	8.9	79
282	Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A356-A360	3.9	120

(2013-2013)

281	Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. <i>Journal of Power Sources</i> , 2013 , 236, 87-94	8.9	81
280	Fluorosulfonyl-(trifluoromethanesulfonyl)imide ionic liquids with enhanced asymmetry. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2565-71	3.6	75
279	Lithium difluoro(oxalato)borate: A promising salt for lithium metal based secondary batteries?. <i>Electrochimica Acta</i> , 2013 , 92, 102-107	6.7	73
278	Conformations and Vibrational Assignments of the (Fluorosulfonyl)(trifluoromethanesulfonyl)imide Anion in Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 24206-24212	3.8	24
277	Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures Transport Properties. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1061-A1070	3.9	105
276	Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material. <i>Chemistry of Materials</i> , 2013 , 25, 4977-4985	9.6	122
275	X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells. <i>Journal of Power Sources</i> , 2013 , 239, 563-571	8.9	164
274	Water-soluble, triflate-based, pyrrolidinium ionic liquids. <i>Electrochimica Acta</i> , 2013 , 99, 108-116	6.7	25
273	Mesoscopic structural organization in triphilic room temperature ionic liquids. <i>Faraday Discussions</i> , 2013 , 167, 499-513	3.6	65
272	Recent progress and remaining challenges in sulfur-based lithium secondary batteriesa review. <i>Chemical Communications</i> , 2013 , 49, 10545-62	5.8	430
271	Improved electrochemical performance of LiMO2 (M=Mn, Ni, Co)[li2MnO3 cathode materials in ionic liquid-based electrolyte. <i>Journal of Power Sources</i> , 2013 , 239, 490-495	8.9	35
270	Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1693-700) ^{4.8}	28
269	Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate. <i>Journal of Power Sources</i> , 2013 , 222, 140-149	8.9	189
268	Methacrylate based gel polymer electrolyte for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 225, 157-162	8.9	45
267	Toward Na-ion BatteriesBynthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material. <i>Chemistry of Materials</i> , 2013 , 25, 142-148	9.6	172
266	The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. <i>Electrochimica Acta</i> , 2013 , 114, 21-29	6.7	74
265	LiTFSI Stability in Water and Its Possible Use in Aqueous Lithium-Ion Batteries: pH Dependency, Electrochemical Window and Temperature Stability. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1694-A1700	3.9	55
264	Carbon coated lithium sulfide particles for lithium battery cathodes. <i>Journal of Power Sources</i> , 2013 , 235, 220-225	8.9	78

263	Influence of relaxation time on the lifetime of commercial lithium-ion cells. <i>Journal of Power Sources</i> , 2013 , 239, 45-53	8.9	45
262	SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. <i>Journal of Power Sources</i> , 2013 , 233, 110-114	8.9	42
261	Polymeric ionic liquid nanoparticles as binder for composite Li-ion electrodes. <i>Journal of Power Sources</i> , 2013 , 240, 745-752	8.9	30
260	Phase stability of Li-ion conductive, ternary solid polymer electrolytes. <i>Electrochimica Acta</i> , 2013 , 113, 181-185	6.7	23
259	How Do Reactions at the Anode/Electrolyte Interface Determine the Cathode Performance in Lithium-Ion Batteries?. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A542-A548	3.9	126
258	Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions. <i>Electrochimica Acta</i> , 2013 , 91, 101-107	6.7	66
257	Carbon Coated ZnFe2O4 Nanoparticles for Advanced Lithium-Ion Anodes. <i>Advanced Energy Materials</i> , 2013 , 3, 513-523	21.8	292
256	Composite poly(ethylene oxide) electrolytes plasticized by N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. <i>ChemSusChem</i> , 2013 , 6, 1037-43	8.3	56
255	Lithium Polymer Batteries Based on Ionic Liquids 2013 , 53-101		5
254	Current research trends and prospects among the various materials and designs used in lithium-based batteries. <i>Journal of Applied Electrochemistry</i> , 2013 , 43, 481-496	2.6	316
253	Use of non-conventional electrolyte salt and additives in high-voltage graphite/LiNi0.4Mn1.6O4 batteries. <i>Journal of Power Sources</i> , 2013 , 238, 17-20	8.9	33
252	Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5293	13	114
251	Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices. <i>Electrochimica Acta</i> , 2013 , 96, 124-133	6.7	68
250	Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)[Ithium bis(trifluoromethanesulfonyl)imideN-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries. <i>Electrochimica</i>	6.7	49
249	Polymerizable ionic liquid with state of the art transport properties. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 10596-602	3.4	31
248	Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy. <i>Langmuir</i> , 2013 , 29, 5806-16	4	109
247	Cu3P Binary Phosphide: Synthesis via a Wet Mechanochemical Method and Electrochemical Behavior as Negative Electrode Material for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 231-238	21.8	68
246	Natural, cheap and environmentally friendly binder for supercapacitors. <i>Journal of Power Sources</i> , 2013 , 221, 14-20	8.9	69

(2012-2013)

245	Investigation of different binding agents for nanocrystalline anatase TiO2 anodes and its application in a novel, green lithium-ion battery. <i>Journal of Power Sources</i> , 2013 , 221, 419-426	8.9	77
244	Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells. <i>ECS Transactions</i> , 2013 , 50, 59-68	1	41
243	Ionic liquids in supercapacitors. MRS Bulletin, 2013, 38, 554-559	3.2	209
242	Improved Rate Capability of Layered Li-Rich Cathode for Lithium Ion Battery by Electrochemical Treatment. <i>ECS Electrochemistry Letters</i> , 2013 , 2, A78-A80		14
241	An Investigation on the Use of a Methacrylate-Based Gel Polymer Electrolyte in High Power Devices. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1753-A1758	3.9	34
240	Electrochemical and Thermal Investigations and Al Current Collector Dissolution Studies of Three Di-Lithium Salts in Comparison to LiPF6Containing Electrolytes. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A535-A541	3.9	11
239	The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. <i>Electrochemistry Communications</i> , 2012 , 14, 47-50	5.1	330
238	1-Fluoropropane-2-one as SEI-forming additive for lithium-ion batteries. <i>Electrochemistry Communications</i> , 2012 , 16, 41-43	5.1	29
237	Physical and electrochemical properties of binary ionic liquid mixtures: (1 lk) PYR14TFSI(k) PYR14IM14. <i>Electrochimica Acta</i> , 2012 , 60, 163-169	6.7	68
236	The influence of activated carbon on the performance of lithium iron phosphate based electrodes. <i>Electrochimica Acta</i> , 2012 , 76, 130-136	6.7	30
235	Natural cellulose as binder for lithium battery electrodes. <i>Journal of Power Sources</i> , 2012 , 199, 331-335	8.9	105
234	Development of ionic liquid-based lithium battery prototypes. <i>Journal of Power Sources</i> , 2012 , 199, 239	-846	110
233	Influence of graphite surface modifications on the ratio of basal plane to flon-basal planeßurface area and on the anode performance in lithium ion batteries. <i>Journal of Power Sources</i> , 2012 , 200, 83-91	8.9	115
232	Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. Journal of Power Sources, 2012, 206, 301-309	8.9	75
231	Methyl tetrafluoro-2-(methoxy) propionate as co-solvent for propylene carbonate-based electrolytes for lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 205, 408-413	8.9	23
230	Ionic Liquid-Based Electrolytes for High Energy, Safer Lithium Batteries. <i>ACS Symposium Series</i> , 2012 , 67-128	0.4	36
229	Dependency of Aluminum Collector Corrosion in Lithium Ion Batteries on the Electrolyte Solvent. <i>ECS Electrochemistry Letters</i> , 2012 , 1, C9-C11		96
228	Thermally Induced Reactions between Lithiated Nano-Silicon Electrode and Electrolyte for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A657-A663	3.9	51

227	Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1755-A1765	3.9	219
226	Ion chromatographic determination of hydrolysis products of hexafluorophosphate salts in aqueous solution. <i>Analytica Chimica Acta</i> , 2012 , 714, 121-6	6.6	117
225	Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. <i>Journal of Power Sources</i> , 2012 , 214, 178-184	8.9	135
224	Investigation of lithium carbide contamination in battery grade lithium metal. <i>Journal of Power Sources</i> , 2012 , 217, 98-101	8.9	24
223	The importance of going nanolfor high power battery materials. <i>Journal of Power Sources</i> , 2012 , 219, 217-222	8.9	53
222	Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes. <i>Zeitschrift Fur Physikalische Chemie</i> , 2012 , 226, 391-407	3.1	93
221	Mixtures of ionic liquids for low temperature electrolytes. <i>Electrochimica Acta</i> , 2012 , 82, 69-74	6.7	67
220	Ionic mobility in ternary polymer electrolytes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2012 , 86, 330-338	6.7	88
219	SEI-forming mechanism of 1-Fluoropropane-2-one in lithium-ion batteries. <i>Electrochimica Acta</i> , 2012 , 81, 161-165	6.7	19
218	Aging of Li2FeSiO4 cathode material in fluorine containing organic electrolytes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2012 , 85, 66-71	6.7	32
217	An electrochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries. <i>Electrochimica Acta</i> , 2012 , 83, 94-104	6.7	87
216	Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 6496-508	3.6	46
215	An Alternative Ionic Conductivity Mechanism for Plastic Crystalline Salt Electrolyte Mixtures. <i>Advanced Energy Materials</i> , 2012 , 2, 1343-1350	21.8	62
214	On the Use of Soft Carbon and Propylene Carbonate-Based Electrolytes in Lithium-Ion Capacitors. Journal of the Electrochemical Society, 2012 , 159, A1240-A1245	3.9	64
213	Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1849-A1855	3.9	17
212	Electrochemical Lithiation of Silicon Clathrate-II. Journal of the Electrochemical Society, 2012, 159, A131	83 <u>A</u> 9137	2 2 1
211	Carbene Adduct as Overcharge Protecting Agent in Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1587-A1590	3.9	23
210	Lithium ion batteries as key component for energy storage in automotive and stationary applications 2011 ,		6

(2011-2011)

209	Molecular Environment and Enhanced Diffusivity of Li+ Ions in Lithium-Salt-Doped Ionic Liquid Electrolytes. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 153-157	6.4	123
208	Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black. <i>Journal of Power Sources</i> , 2011 , 196, 8836-8842	8.9	137
207	Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). Journal of Power Sources, 2011 , 196, 9719-9730	8.9	119
206	The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids. <i>Electrochimica Acta</i> , 2011 , 57, 153-159	6.7	87
205	High flash point electrolyte for use in lithium-ion batteries. <i>Electrochimica Acta</i> , 2011 , 56, 7530-7535	6.7	84
204	Annealing protocols for pyrrolidinium bis(trifluoromethylsulfonyl)imide type ionic liquids. <i>Electrochimica Acta</i> , 2011 , 57, 220-227	6.7	22
203	NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2011 , 15, 349-356	2.6	55
202	Composite LiFePO4/AC high rate performance electrodes for Li-ion capacitors. <i>Journal of Power Sources</i> , 2011 , 196, 4136-4142	8.9	75
201	New Insights to Self-Aggregation in Ionic Liquid Electrolytes for High-Energy Electrochemical Devices. <i>Advanced Energy Materials</i> , 2011 , 1, 274-281	21.8	59
2 00	An Impedimetric Glucose Biosensor Based on Overoxidized Polypyrrole Thin Film. <i>Electroanalysis</i> , 2011 , 23, 1134-1141	3	30
199	Phase Behavior of Ionic LiquidliX Mixtures: Pyrrolidinium Cations and TFSIDAnions Linking Structure to Transport Properties. <i>Chemistry of Materials</i> , 2011 , 23, 4331-4337	9.6	97
198	Inhibition of Self-Aggregation in Ionic Liquid Electrolytes for High-Energy Electrochemical Devices. Journal of Physical Chemistry C, 2011 , 115, 19431-19436	3.8	47
197	Chemicalphysical properties of bis(perfluoroalkylsulfonyl)imide-based ionic liquids. <i>Electrochimica Acta</i> , 2011 , 56, 1300-1307	6.7	128
196	Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. <i>Electrochimica Acta</i> , 2011 , 56, 4092-4099	6.7	200
195	Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. Journal of Power Sources, 2011 , 196, 2187-2194	8.9	156
194	Room temperature lithium polymer batteries based on ionic liquids. <i>Journal of Power Sources</i> , 2011 , 196, 6703-6709	8.9	96
193	Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. <i>Journal of Power Sources</i> , 2011 , 196, 483	21 ⁸ 482	5 ¹⁶⁷
192	Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. Journal of Power Sources, 2011 , 196, 7687-7691	8.9	90

191	Ionic Liquid Binary Mixtures for Low Temperature Applications. <i>Advances in Science and Technology</i> , 2010 , 72, 315-319	0.1	4
190	Hysteresis Effects in the Potential-Dependent Double Layer Capacitance of Room Temperature Ionic Liquids at a Polycrystalline Platinum Interface. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3614-36	51 3 .8	94
189	Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A320	3.9	224
188	Melting behavior and ionic conductivity in hydrophobic ionic liquids. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 1776-82	2.8	55
187	Blending ionic liquids: how physico-chemical properties change. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 1784-92	3.6	63
186	Phase Behavior and Thermal Properties of Ternary Ionic Liquid l ithium Salt (IL ILI iX) Electrolytes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6201-6204	3.8	49
185	Melting Behavior of Pyrrolidinium-Based Ionic Liquids and Their Binary Mixtures. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 12364-12369	3.8	113
184	UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. <i>Journal of Power Sources</i> , 2010 , 195, 6130-6137	8.9	136
183	Alloying of electrodeposited silicon with lithium principal study of applicability as anode material for lithium ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2010 , 14, 2203-2207	2.6	26
182	Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. <i>International Journal of Energy Research</i> , 2010 , 34, 97-106	4.5	40
181	The conductivity of pyrrolidinium and sulfonylimide-based ionic liquids: A combined experimental and computational study. <i>Journal of Power Sources</i> , 2010 , 195, 2074-2076	8.9	49
180	Mixtures of Ionic Liquid in Combination with Graphite Electrodes: The Role of Electrolyte Additives and Li-salt. <i>ECS Transactions</i> , 2009 , 16, 45-49	1	9
179	Electrochemical and Physicochemical Properties of PYR14-FSI Based Electrolytes with LiFSI. <i>ECS Transactions</i> , 2009 , 16, 51-57	1	5
178	Pulsed Electrosynthesis of Polypyrrole in N-Butyl-N-Methyl-Pyrrolidinium Bis(Trifluoromethanesulfonyl)Imide Ionic Liquid for Electrochemical Sensors. <i>ECS Transactions</i> , 2009 , 25, 63-71	1	2
177	(Invited) Long-Term Cyclability of Lithium Metal Electrodes in Ionic Liquid-Based Electrolytes at Room Temperature. <i>ECS Transactions</i> , 2009 , 25, 127-138	1	27
176	(Invited) Na-CMC as Possible Binder for LiFePO4/C Composite Electrodes: The Role of the Drying Procedure. <i>ECS Transactions</i> , 2009 , 25, 265-270	1	8
175	(Invited) LiFSI-PYR1AFSI Binary Electrolyte Mixtures for Lithium Batteries. <i>ECS Transactions</i> , 2009 , 25, 49-60	1	19
174	Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids. <i>Electrochimica Acta</i> , 2009, 54, 1325-1332	6.7	185

(2007-2009)

173	Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of the electrolytes. <i>Journal of Power Sources</i> , 2009 , 192, 599-605	8.9	161
172	Lithium insertion in graphite from ternary ionic liquid lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature. <i>Journal of Power Sources</i> , 2009 , 192, 606-611	8.9	105
171	SECONDARY BATTERIES LITHIUM RECHARGEABLE SYSTEMS Electrolytes: Ionic Liquids 2009 , 85-91		3
170	Electrochemical and Physicochemical Properties of PY[sub 14]FSI-Based Electrolytes with LiFSI. Journal of the Electrochemical Society, 2009 , 156, A891	3.9	118
169	Structural organization and transport properties of novel pyrrolidinium-based ionic liquids with perfluoroalkyl sulfonylimide anions. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 10750-9	3.4	92
168	Nanoscale organization in piperidinium-based room temperature ionic liquids. <i>Journal of Chemical Physics</i> , 2009 , 130, 164521	3.9	203
167	(Invited) Greener and Cheaper Batteries Containing Fluorine-Free Binder in Combination with Ionic Liquid Based Electrolytes. <i>ECS Transactions</i> , 2009 , 25, 21-25	1	8
166	Trends in Cathode Materials for Rechargeable Batteries 2009 , 315-360		1
165	Physical and electrochemical properties of N-alkyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ionic liquids: PY13FSI and PY14FSI. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 13577-80	3.4	157
164	Electrodeposited ZnO/Cu2O heterojunction solar cells. <i>Electrochimica Acta</i> , 2008 , 53, 2226-2231	6.7	262
163	Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. <i>Electrochimica Acta</i> , 2008 , 53, 6397-6401	6.7	75
162	Electropolymerization of poly(3-methylthiophene) in pyrrolidinium-based ionic liquids for hybrid supercapacitors. <i>Electrochimica Acta</i> , 2008 , 53, 7967-7971	6.7	46
161	A novel ternary polymer electrolyte for LMP batteries based on thermal cross-linked poly(urethane acrylate) in presence of a lithium salt and an ionic liquid. <i>European Polymer Journal</i> , 2008 , 44, 2153-2161	5.2	29
160	Electrosynthesis of poly(o-phenylenediamine) in a room temperature ionic liquid. <i>Electrochemistry Communications</i> , 2007 , 9, 2037-2040	5.1	21
159	Ionic liquids in electrochromic devices. <i>Electrochimica Acta</i> , 2007 , 52, 4792-4797	6.7	53
158	The influence of air and its components on the cathodic stability of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. <i>Electrochimica Acta</i> , 2007 , 53, 1837-1842	6.7	74
157	Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems. <i>Journal of Power Sources</i> , 2007 , 171, 861-869	8.9	139
156	High temperature carbonBarbon supercapacitor using ionic liquid as electrolyte. <i>Journal of Power Sources</i> , 2007 , 165, 922-927	8.9	485

155	Ionic Liquids as Electrolyte in Lithium Batteries: In Situ FTIRs Studies on the Use of Electrolyte Additives. <i>ECS Transactions</i> , 2007 , 11, 109-114	1	21
154	Phase Behavior and Conductivity of Et4NTFSI-LiTFSI Mixtures - A Model System for Ionic Liquid Lithium Battery Electrolytes. <i>ECS Transactions</i> , 2007 , 11, 115-118	1	4
153	Solvent-free, PYR1ATFSI Ionic Liquids-based Ternary Polymer Electrolyte Systems. II. Battery Tests. <i>ECS Transactions</i> , 2007 , 11, 119-129	1	9
152	Investigation of the Electrochemical Properties of PolymerliiXIbnic Liquid Ternary Systems. <i>Australian Journal of Chemistry</i> , 2007 , 60, 47	1.2	13
151	Hybrid Supercapacitors with Ionic Liquid Electrolytes. ECS Transactions, 2006, 1, 55-59	1	5
150	Ionic Liquid Based Electrolytes for High Energy Electrochemical Storage Devices. <i>ECS Transactions</i> , 2006 , 1, 67-71	1	14
149	Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1685	3.9	182
148	Thermal phase behaviour of N-alkyl-N-methylpyrrolidinium and piperidinium bis(trifluoromethanesulfonyl) imide salts. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 10377-10390	1.8	35
147	Characterization of Sol-Gel-synthesized LiFePO4 by multiple scattering XAFS. <i>Inorganic Chemistry</i> , 2006 , 45, 2750-7	5.1	49
146	New disordering mode for TFSI- anions: the nonequilibrium, plastic crystalline structure of Et4NTFSI. <i>Inorganic Chemistry</i> , 2006 , 45, 1412-4	5.1	7 2
145	Characterization of Solvent-Free Polymer Electrolytes Consisting of Ternary PEOLiTFSIBYR[sub 14] TFSI. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1649	3.9	111
144	Plastic Phase Transitions in N-Ethyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide. <i>Chemistry of Materials</i> , 2006 , 18, 934-938	9.6	65
143	Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40°C. Journal of Power Sources, 2006 , 156, 560-566	8.9	170
142	Comparison of Solvent-Cast and Hot-Pressed P(EO)[sub 20]LiN(SO[sub 2]CF[sub 2]CF[sub 3])[sub 2] Polymer Electrolytes Containing Nanosized SiO[sub 2]. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A283	3.9	35
141	NMR investigation of ionic liquid-LiX mixtures: pyrrolidinium cations and TFSI- anions. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22814-9	3.4	160
140	Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its mixture with LiN(SO2CF3)2. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 92-6	2.8	170
139	0.6Ah Li/V2O5 battery prototypes based on solvent-free PEOlliN(SO2CF2CF3)2 polymer electrolytes. <i>Journal of Power Sources</i> , 2005 , 143, 236-242	8.9	21
138	Novel polymeric systems for lithium ion batteries gel electrolytes. <i>Electrochimica Acta</i> , 2005 , 50, 4396-4	140 / 1	17

Recent developments in the ENEA lithium metal battery project. Electrochimica Acta, 2005, 50, 3859-38657 137 111 A multinuclear NMR study of ion transport in P(EO)nLiBETI complexes. Solid State Ionics, 2005, 176, 1113;1112113 136 Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. 6.7 135 157 Electrochimica Acta, 2005, 50, 2233-2237 Solution-cast Nafion / montmorillonite composite membrane with low methanol permeability. 6.7 66 134 Electrochimica Acta, 2005, 50, 2639-2645 FT-Raman spectroscopy study on the effect of ceramic fillers in P(EO)20LiBETI. Solid State Ionics, 133 3.3 4 2005. 176. 571-577 PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer 132 3.9 307 Electrolyte Batteries. Journal of the Electrochemical Society, 2005, 152, A978 An Elegant Fix for Polymer Electrolytes. Electrochemical and Solid-State Letters, 2005, 8, A125 131 123 Gelified Co-continuous Polymer Blend System as Polymer Electrolyte for Li Batteries. Journal of the 130 3.9 7 Electrochemical Society, 2004, 151, A578 Overview of Energy/Hydrogen Storage: State-of-the-Art of the Technologies and Prospects for 129 1 Nanomaterials.. ChemInform, 2004, 35, no Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for 128 nanomaterials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 3.1 91 2004, 108, 2-8 Investigations of natural pyrite in solvent-free polymer electrolyte, lithium metal batteries. 127 6.7 41 Electrochimica Acta, 2004, 49, 3419-3427 Novel polymeric systems for lithium-ion batteries gel electrolytes. *Electrochimica Acta*, **2004**, 50, 149-15**8**.7 126 Effect of nanosized SiO2 on the transport properties of solventless P(EO)20LIBETI polymer 28 125 3.3 electrolytes: a solid-state NMR study. Solid State Ionics, 2004, 166, 407-415 FC vehicle hybridisation: an affordable solution for an energy-efficient FC powered drive train. 8.9 32 124 Journal of Power Sources, 2004, 125, 280-291 Perfluoroalkanesulfonylimides and their lithium salts: synthesis and characterisation of 36 123 2.1 intermediates and target compounds. Journal of Fluorine Chemistry, 2004, 125, 243-252 Phase Behavior of Ionic Liquid IX Mixtures: Pyrrolidinium Cations and TFSI- Anions. Chemistry of 9.6 122 250 Materials, 2004, 16, 2881-2885 PEO-LiN(SO[sub 2]CF[sub 2]CF[sub 3])[sub 2] Polymer Electrolytes. Journal of the Electrochemical 121 3.9 37 Society, 2004, 151, A238 Novel polymeric systems for lithium-ion batteries gel electrolytesI. Cross-linked polyfluorosilicone. 6.7 120 12 *Electrochimica Acta*, **2004**, 50, 149-158

119	Effect of fillers on the electrochemical and interfacial properties of PEOIIiN(SO2CF2CF3)2 polymer electrolytes. <i>Electrochimica Acta</i> , 2004 , 49, 1605-1612	6.7	36
118	Characteristics of Interpenetrated Polymer Network System made of Polyethylene Oxide-LiBF4 Complex and Polystyrene as the Electrolyte for Lithium Secondary Battery. <i>Electrochemistry</i> , 2003 , 71, 1182-1186	1.2	3
117	Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. <i>Electrochemistry Communications</i> , 2003 , 5, 1016-1020	5.1	388
116	Specific heat capacity of lithium polymer battery components. <i>Thermochimica Acta</i> , 2003 , 402, 219-224	2.9	16
115	Ionic conductivity in crystalline∄morphous polymer electrolytes IP(EO)6:LiX phases. <i>Electrochemistry Communications</i> , 2003 , 5, 575-578	5.1	45
114	Poly(ethylene oxide) LiN(SO[sub 2]CF[sub 2]CF[sub 3])[sub 2] Polymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A525	3.9	32
113	Characterization of PEO-lithium triflate polymer electrolytes: Conductivity, DSC and Raman Investigations. <i>Ionics</i> , 2002 , 8, 36-43	2.7	28
112	Segmental dynamics in polymer electrolytes. <i>Applied Physics A: Materials Science and Processing</i> , 2002 , 74, s493-s495	2.6	9
111	Magnetic resonance studies of chemically intercalated LixV2O5 (x=1.16 and 1.48). <i>Solid State Ionics</i> , 2002 , 146, 43-54	3.3	15
110	A lithium battery electrolyte based on gelled polyethylene oxide. <i>Solid State Ionics</i> , 2002 , 146, 65-72	3.3	35
109	Structural and dynamical characterization of melt PEOBalt mixtures. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2002 , 304, 308-313	3.3	10
108	Absorption of polarized X-rays by V2O5-based cathodes for lithium batteries: an application. <i>Electrochimica Acta</i> , 2002 , 47, 3163-3169	6.7	19
107	PEO-LiN(SO[sub 2]CF[sub 2]CF[sub 3])[sub 2] Polymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A1282	3.9	30
106	Magnetic resonance studies of chemically intercalated LixV2O5 aerogels. <i>Journal of Applied Physics</i> , 2002 , 92, 3839-3852	2.5	8
105	A New Synthetic Route for Preparing LiFePO[sub 4] with Enhanced Electrochemical Performance. Journal of the Electrochemical Society, 2002 , 149, A886	3.9	170
104	Poly(ethylene oxide)-LiN(SO[sub 2]CF[sub 2]CF[sub 3])[sub 2] Polymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A891	3.9	39
103	Synthesis of a bicontinuous electrically conductive nanocomposite via in-situ formation of RuO2 nanoparticles. <i>Solid State Ionics</i> , 2001 , 139, 211-218	3.3	9
102	Electrochemical and synchrotron XAS studies of lithium intercalation into vanadium pentoxide aerogels and nanocomposites. <i>Journal of Power Sources</i> , 2001 , 97-98, 469-472	8.9	18

101	Medical batteries for external medical devices. <i>Journal of Power Sources</i> , 2001 , 97-98, 750-754	8.9	5
100	Overview of ENEAS Projects on lithium batteries. <i>Journal of Power Sources</i> , 2001 , 97-98, 768-771	8.9	4
99	Investigation on lithiumpolymer electrolyte batteries. <i>Journal of Power Sources</i> , 2001 , 97-98, 790-794	8.9	40
98	The two-phase battery concept: a new strategy for high performance lithium polymer batteries. Journal of Power Sources, 2001 , 97-98, 786-789	8.9	7
97	Electrochemical testing of industrially produced PEO-based polymer electrolytes. <i>Journal of Power Sources</i> , 2001 , 101, 42-46	8.9	25
96	Dynamic heterogeneity in polymer electrolytes. Comparison between QENS data and MD simulations. <i>Physica B: Condensed Matter</i> , 2001 , 301, 163-167	2.8	31
95	The role of conductive carbon in PEO-based composite cathodes. <i>European Polymer Journal</i> , 2001 , 37, 65-69	5.2	12
94	Co-continuous Polymer Blend Based Lithium-Ion Conducting Gel-Polymer Electrolytes. <i>Electrochemical and Solid-State Letters</i> , 2001 , 4, A124		10
93	Evidence for Reversible Formation of Metallic Cu in Cu[sub 0.1]V[sub 2]O[sub 5] Xerogel Cathodes during Intercalation Cycling of Li[sup +] Ions as Detected by X-Ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2001, 148, A768	3.9	46
92	PEO-LiN(SO[sub 2]CF[sub 2]CF[sub 3])[sub 2] Polymer Electrolytes: I. XRD, DSC, and Ionic Conductivity Characterization. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A1171	3.9	96
91	Determination of LiCF(3)SO(3) and gamma-LiAlO(2) in composite PEO-based polymer electrolytes by flame atomic absorption spectrometry. <i>Talanta</i> , 2001 , 55, 35-41	6.2	3
90	Nanocomposites of V[sub 2]O[sub 5] Aerogel and RuO[sub 2] as Cathode Materials for Lithium Intercalation. <i>Electrochemical and Solid-State Letters</i> , 2001 , 4, A221		37
89	PEO-carbon composite lithium polymer electrolyte. <i>Electrochimica Acta</i> , 2000 , 45, 2139-2145	6.7	59
88	Enhanced performance of lithium polymer batteries using a V2O5 B EG composite cathode. <i>Electrochemistry Communications</i> , 2000 , 2, 44-47	5.1	22
87	Lithium-ion batteries for hearing aid applications: I. Design and performance. <i>Journal of Power Sources</i> , 2000 , 89, 29-39	8.9	12
86	Lithium-ion batteries for hearing aid applications: II. Pulse discharge and safety tests. <i>Journal of Power Sources</i> , 2000 , 90, 144-152	8.9	16
85	Characterization of PEO-Based Composite Cathodes. I. Morphological, Thermal, Mechanical, and Electrical Properties. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 451	3.9	27
84	The Reduction of the Irreversible Capacity of Metal Oxide-Based Negative Electrodes for Li-Ion Batteries. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 340, 437-448		

83	Lithium iron oxide as alternative anode for li-ion batteries. Solid State Sciences, 2000, 2, 365-370		45
82	Investigation on the Stability of the Lithium-Polymer Electrolyte Interface. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 4448	3.9	113
81	Evidence of bilayer structure in V2O5 xerogel. <i>Inorganic Chemistry</i> , 2000 , 39, 1514-7	5.1	70
80	Li-Mn-O Aerogels. <i>Electrochemical and Solid-State Letters</i> , 1999 , 2, 483		29
79	In Situ X-Ray Absorption Spectroscopy Characterization of V 2 O 5 Xerogel Cathodes upon Lithium Intercalation. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 2387-2392	3.9	97
78	Stress changes in electrochromic thin film electrodes:. <i>Solar Energy Materials and Solar Cells</i> , 1999 , 56, 213-221	6.4	11
77	Raman and XPS characterization of vanadium oxide thin films deposited by reactive RF sputtering. <i>Solar Energy Materials and Solar Cells</i> , 1999 , 56, 249-258	6.4	40
76	Performance of copper-doped V2O5 xerogel in coin cell assembly. <i>Journal of Power Sources</i> , 1999 , 83, 9-14	8.9	30
75	V2O5 aerogel-like lithium intercalation host. Solid State Ionics, 1999, 116, 279-291	3.3	38
74	XAS investigation on polyvalent cation intercalation in V2O5 aerogels. <i>Journal of Synchrotron Radiation</i> , 1999 , 6, 743-5	2.4	16
73	High rate electrodes of V2O5 aerogel. <i>Electrochimica Acta</i> , 1999 , 44, 2209-2217	6.7	80
72	Lithium ion insertion in porous metal oxides. <i>Electrochimica Acta</i> , 1999 , 45, 215-224	6.7	116
71	Doped Vanadium Oxides as Host Materials for Lithium Intercalation. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 1355-1360	3.9	160
70	Composites of V 2 O 5 Aerogel and Nickel Fiber as High Rate Intercalation Electrodes. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 1346-1350	3.9	51
69	Identification of an Unconventional Zinc Coordination Site in Anhydrous ZnxV2O5Aerogels from X-ray Absorption Spectroscopy. <i>Chemistry of Materials</i> , 1999 , 11, 2257-2264	9.6	29
68	Synthesis, Characterization, and Electrochemical Properties of Magnesium Birnessite and Zinc Chalcophanite Prepared by a Low-Temperature Route. <i>Chemistry of Materials</i> , 1999 , 11, 949-957	9.6	57
67	V2O5 xerogel lithiumpolymer electrolyte batteries. <i>Journal of Power Sources</i> , 1998 , 75, 73-83	8.9	53
66	Long cycle life LiMnD defective spinel electrodes. <i>Journal of Power Sources</i> , 1998 , 76, 91-97	8.9	13

65	Intercalation of Polyvalent Cations into V2O5 Aerogels. <i>Chemistry of Materials</i> , 1998 , 10, 682-684	9.6	145
64	Radio-Frequency Reactively Sputtered VO x Thin Films Deposited at Different Oxygen Flows. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 706-711	3.9	16
63	A 400 mAh/g Aerogel-like V 2 O 5 Cathode for Rechargeable Lithium Batteries. <i>Journal of the Electrochemical Society</i> , 1998 , 145, L73-L74	3.9	72
62	Ionic Conductivity of C60-Based Solid Electrolyte. <i>Fullerenes, Nanotubes, and Carbon Nanostructures</i> , 1998 , 6, 227-242		9
61	Processing and Performance of V2O5 Xerogel, Aerogel, and Aerogellike Materials as Lithium Intercalation Hosts. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 548, 113		
60	Processing and Properties of Amorphous Manganese Dioxide Formed by Sol-Gel Procedures. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 548, 119		2
59	Silver-Doped Vanadium Oxides as Host Materials for Lithium Intercalation. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 496, 353		5
58	Dip-coated silver-doped V2O5 xerogels as host materials for lithium intercalation. <i>Solid State Ionics</i> , 1997 , 100, 247-258	3.3	68
57	XAS and electrochemical characterization of lithiated high surface area V2O5 aerogels. <i>Solid State Ionics</i> , 1997 , 104, 195-204	3.3	59
56	High Surface Area V 2 O 5 Aerogel Intercalation Electrodes. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 2099-2104	3.9	154
55	Raman spectroscopic investigations of Li-intercalated V2O5 xerogel. <i>Journal of Non-Crystalline Solids</i> , 1996 , 208, 89-98	3.9	14
54	XAS and electrochemical characterization of lithium intercalated V2O5 xerogels. <i>Solid State Ionics</i> , 1996 , 90, 5-14	3.3	55
53	Performance of Lithium/ V 2 O 5 Xerogel Coin Cells. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 3473-3477	3.9	56
52	Spin-Coated V2O5 Xerogel Thin Films. 1. Microstructure and Morphology. <i>Chemistry of Materials</i> , 1995 , 7, 780-785	9.6	41
51	Aerogels and Xerogels of V 2 O 5 as Intercalation Hosts. <i>Journal of the Electrochemical Society</i> , 1995 , 142, L102-L103	3.9	101
50	Electrochemical Properties of Polyethylene Oxide - Li [(CF 3 SO 2)2 N] - Gamma - LiAlO2 Composite Polymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 2118-2121	3.9	148
49	Spin coated V2O5 XRG as optically passive electrode in laminated electrochromic devices. <i>Solar Energy Materials and Solar Cells</i> , 1995 , 39, 167-177	6.4	27
48	Laminated Electrochromic Windows Based on Nickel Oxide, Tungsten Oxide, and Gel Electrolytes. Journal of the Electrochemical Society, 1994 , 141, 1025-1028	3.9	21

47	Ambient Temperature Lithium Polymer Rocking-Chair Batteries. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 1405-1408	3.9	55
46	New Thin-Layer Solid State Lithium Polymer Batteries. <i>Journal of the Electrochemical Society</i> , 1994 , 141, L80-L81	3.9	6
45	Highly conductive solid polymer electrolyte for smart windows. <i>Polymer</i> , 1994 , 35, 3592-3597	3.9	18
44	The role of conductive polymers in advanced electrochemical technology. <i>Electrochimica Acta</i> , 1994 , 39, 255-263	6.7	141
43	Synthesis and characterization of highly conducting gel electrolytes. <i>Electrochimica Acta</i> , 1994 , 39, 218	7 @] 94	108
42	Spectroscopic investigations of Li-intercalated V2O5 polycrystalline films. <i>Solid State Ionics</i> , 1994 , 70-71, 412-416	3.3	26
41	Characterization of Nonstoichiometric Nickel Oxide Thin-Film Electrodes. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 889-895	3.9	49
40	Characterization of PAN-Based Gel Electrolytes. Electrochemical Stability and Lithium Cyclability. <i>Chemistry of Materials</i> , 1994 , 6, 538-542	9.6	51
39	New Concepts in Primary and Rechargeable Solid State Lithium Polymer Batteries. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 369, 495		
38	Conducting Polymers: New Electrochromic Materials for Advanced Optical Devices. <i>Molecular Crystals and Liquid Crystals</i> , 1993 , 229, 97-109		38
37	Stress and electrochromism induced by Li insertion in crystalline and amorphous V2O5 thin film electrodes. <i>Electrochimica Acta</i> , 1993 , 38, 1637-1642	6.7	50
36	Thin metal oxide films on transparent substrates for Li-insertion devices. <i>Journal of Applied Electrochemistry</i> , 1993 , 23, 1187-1195	2.6	23
35	Plasticized carbon electrodes of interest for lithium rocking chair batteries. <i>Journal of Power Sources</i> , 1993 , 45, 333-341	8.9	27
34	The LixTiS2Li(1)CoO2 solid-state rocking chair battery. <i>Journal of Power Sources</i> , 1993 , 44, 481-484	8.9	7
33	Electrochromism of thin-film nickel oxide electrodes. <i>Solid State Ionics</i> , 1992 , 53-56, 520-524	3.3	33
32	A new class of polymer electrolytes based on chain-extended polyepoxides and LiClO4. <i>Electrochimica Acta</i> , 1992 , 37, 1559-1564	6.7	32
31	Laminated electrochromic devices: An emerging technology. <i>Electrochimica Acta</i> , 1992 , 37, 1703-1706	6.7	6
30	The electrochromic process in non-stoichiometric nickel oxide thin film electrodes. <i>Electrochimica Acta</i> , 1992 , 37, 1033-1038	6.7	67

29	An electrochromic window based on polymethyl thiophene and nickel oxide electrodes. <i>Electrochimica Acta</i> , 1991 , 36, 837-840	6.7	53
28	Cation intercalation in electrochromic NiO x films 1991 ,		3
27	A Comparison of the Electrochromic Behavior and the Mechanical Properties of WO 3 and NiO x Thin Film Electrodes. <i>Journal of the Electrochemical Society</i> , 1991 , 138, 3182-3186	3.9	29
26	Polypyrrole-dodecylsulfate: 2 🛘 04 cycles with an organic electrochromic material in a Basic Medium. <i>Advanced Materials</i> , 1990 , 2, 480-482	24	36
25	Electrochromic NiOxHy, hydrated films: cyclic voltammetry and ac impedance spectroscopy in aqueous electrolyte. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 277, 277-290		35
24	Properties and applications of lithium ion-conducting polymers. <i>Solid State Ionics</i> , 1990 , 40-41, 375-379	3.3	12
23	The Intercalation of Lithium in Nickel Oxide and Its Electrochromic Properties. <i>Journal of the Electrochemical Society</i> , 1990 , 137, 3297-3300	3.9	76
22	Electrochromic Properties of Nickel Oxide Electrodes. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 210, 57		1
21	An Electrochromic Window Based on Li x WO 3 / (PEO) 8LiClO4 / NiO. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 3394-3395	3.9	63
20	Characteristics of Electrochemically Synthesized Polymer Electrodes: VI . Kinetics of the Process of Polypyrrole Oxidation. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 3729-3734	3.9	68
19	Electrochemical characterization of a class of low temperature conducting polymer electrolytes. <i>Electrochimica Acta</i> , 1989 , 34, 635-640	6.7	23
18	Characterization of poly(ethylene oxide) copper salt polymer electrolytes. <i>Applied Physics A: Solids and Surfaces</i> , 1989 , 49, 425-429		11
17	Characteristics of a poly(ethylene oxide)-LiBF4 polymer electrolyte. <i>Journal of Applied Electrochemistry</i> , 1988 , 18, 401-404	2.6	8
16	New Poly (ethylene Oxide) - Cu (CF 3 SO 3) 2 Polymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 1961-1965	3.9	18
15	Solid-State Thermoelectrochromic Display. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 753-755	3.9	25
14	Infrared levels of monomeric uracil in cryogenic matrices. <i>Journal of Molecular Structure</i> , 1984 , 116, 49-0	6 <u>3</u> .4	64
13	Structure, Composition, Transport Properties, and Electrochemical Performance of the Electrode-Electrolyte Interphase in Non-Aqueous Na-Ion Batteries. <i>Advanced Materials Interfaces</i> ,21017	7 1 3 ⁶	1
12	Hybrid Energy Storage and Hydrogen Supply Based on Aluminum Multiservice Case for Electric Mobility and Energy Storage Services. <i>Advanced Materials Technologies</i> ,2101400	6.8	О

11	Covalency Competition Induced Active Octahedral Sites in Spinel Cobaltites for Enhanced Pseudocapacitive Charge Storage. <i>Advanced Energy Materials</i> ,2102053	21.8	7
10	Assessment and Progress of Polyanionic Cathodes in Aqueous Sodium Batteries. <i>Energy and Environmental Science</i> ,	35.4	6
9	Single-ion conducting polymer electrolyte for Li LiNi0.6Mn0.2Co0.2O2 batteries[mpact of the anodic cutoff voltage and ambient temperature. <i>Journal of Solid State Electrochemistry</i> ,1	2.6	3
8	Strategies towards enabling lithium metal in batteries: interphases and electrodes. <i>Energy and Environmental Science</i> ,	35.4	39
7	The passivity of lithium electrodes in liquid electrolytes for secondary batteries. <i>Nature Reviews Materials</i> ,	73.3	44
6	Polysiloxane-Based Single-Ion Conducting Polymer Blend Electrolyte Comprising Small-Molecule Organic Carbonates for High-Energy and High-Power Lithium-Metal Batteries. <i>Advanced Energy</i> <i>Materials</i> ,2200013	21.8	3
5	Influence of the Current Density on the Interfacial Reactivity of Layered Oxide Cathodes for Sodium-Ion Batteries. <i>Energy Technology</i> ,2200071	3.5	1
4	Electrolyte measures to prevent polysulfide shuttle in Li-S batteries. <i>Batteries and Supercaps</i> ,	5.6	4
3	Metal®rganic Framework Derived Copper Chalcogenides-Carbon Composites as High-Rate and Stable Storage Materials for Na Ions. <i>Advanced Sustainable Systems</i> ,2200109	5.9	2
2	Guidelines for Air-Stable Lithium/Sodium Layered Oxide Cathodes1074-1086		2
1	Difluorobenzene-Based Locally Concentrated Ionic Liquid Electrolyte Enabling Stable Cycling of Lithium Metal Batteries with Nickel-Rich Cathode. <i>Advanced Energy Materials</i> ,2200862	21.8	7