
Peter S Shuttleworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Microwave-Assisted Hydrothermal Depolymerization of Cellulose. Journal of the American Chemical Society, 2013, 135, 11728-11731.	6.6	198
2	Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresource Technology, 2010, 101, 3776-3779.	4.8	151
3	The importance of being porous: polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Advances, 2012, 2, 8992.	1.7	148
4	The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresource Technology, 2009, 100, 6064-6068.	4.8	147
5	Identification of high performance solvents for the sustainable processing of graphene. Green Chemistry, 2017, 19, 2550-2560.	4.6	133
6	Use of green chemical technologies in an integrated biorefinery. Energy and Environmental Science, 2011, 4, 471-479.	15.6	130
7	Valorisation of Orange Peel Residues: Waste to Biochemicals and Nanoporous Materials. ChemSusChem, 2012, 5, 1694-1697.	3.6	112
8	Thermosetting resin based on epoxidised linseed oil and bio-derived crosslinker. Green Chemistry, 2012, 14, 1759.	4.6	107
9	New insights into the curing of epoxidized linseed oil with dicarboxylic acids. Green Chemistry, 2015, 17, 4000-4008.	4.6	106
10	Applications of nanoparticles in biomass conversion to chemicals and fuels. Green Chemistry, 2014, 16, 573-584.	4.6	96
11	Microwave-mediated pyrolysis of macro-algae. Green Chemistry, 2011, 13, 2330.	4.6	88
12	Preparation and characterisation of bioplastics made from cottonseed protein. Green Chemistry, 2012, 14, 2009.	4.6	85
13	Industrial Applications of C-C Coupling Reactions. Current Organic Synthesis, 2010, 7, 614-627.	0.7	74
14	The potential of microwave technology for the recovery, synthesis and manufacturing of chemicals from bio-wastes. Catalysis Today, 2015, 239, 80-89.	2.2	70
15	A Sustainable Freezeâ€Ðrying Route to Porous Polysaccharides with Tailored Hierarchical Meso―and Macroporosity. Macromolecular Rapid Communications, 2015, 36, 774-779.	2.0	66
16	Importance of Micropore–Mesopore Interfaces in Carbon Dioxide Capture by Carbonâ€Based Materials. Angewandte Chemie - International Edition, 2016, 55, 9173-9177.	7.2	66
17	Low-temperature microwave-assisted pyrolysis of waste office paper and the application of bio-oil as an Al adhesive. Green Chemistry, 2015, 17, 260-270.	4.6	65
18	Starch-derived carbonaceous mesoporous materials (Starbon®) for the selective adsorption and recovery of critical metals. Green Chemistry, 2015, 17, 2146-2149.	4.6	57

Peter S Shuttleworth

#	Article	IF	CITATIONS
19	Torrefaction/biochar production by microwave and conventional slow pyrolysis – comparison of energy properties. GCB Bioenergy, 2013, 5, 144-152.	2.5	56
20	Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks. Journal of Natural Gas Chemistry, 2012, 21, 270-274.	1.8	44
21	Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels. Materials, 2014, 7, 7472-7512.	1.3	40
22	Molecular‣evel Understanding of the Carbonisation of Polysaccharides. Chemistry - A European Journal, 2013, 19, 9351-9357.	1.7	33
23	Bio-based thermoset composites from epoxidised linseed oil and expanded starch. RSC Advances, 2014, 4, 23304-23313.	1.7	32
24	DPD studies on mixed micelles self-assembled from MPEG-PDEAEMA and MPEG-PCL for controlled doxorubicin release. Colloids and Surfaces B: Biointerfaces, 2019, 178, 56-65.	2.5	28
25	Starbon® acids in alkylation and acetylation reactions: Effect of the Brönsted-Lewis acidity. Catalysis Communications, 2011, 12, 1471-1476.	1.6	27
26	Physically-crosslinked polyvinyl alcohol composite hydrogels containing clays, carbonaceous materials and magnetic nanoparticles as fillers. Journal of Environmental Chemical Engineering, 2020, 8, 103795.	3.3	27
27	Thermomechanical relaxation and different water states in cottonseed protein derived bioplastics. RSC Advances, 2014, 4, 32320.	1.7	25
28	Scalable graphene-based nanocomposite coatings for flexible and washable conductive textiles. Carbon, 2020, 167, 495-503.	5.4	23
29	Switchable adhesives for carpet tiles: a major breakthrough in sustainable flooring. Green Chemistry, 2010, 12, 798.	4.6	21
30	Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures. Faraday Discussions, 2017, 202, 451-464.	1.6	21
31	New Perspectives on Graphene/Polymer Fibers and Fabrics for Smart Textiles: The Relevance of the Polymer/Graphene Interphase. Frontiers in Materials, 2018, 5, .	1.2	21
32	Shaped mesoporous materials from fresh macroalgae. Journal of Materials Chemistry A, 2013, 1, 5203.	5.2	19
33	Comparative study of the covalent diazotization of graphene and carbon nanotubes using thermogravimetric and spectroscopic techniques. Physical Chemistry Chemical Physics, 2013, 15, 16806.	1.3	18
34	Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose, 2019, 26, 4693-4706.	2.4	17
35	Flexible Bionanocomposites from Epoxidized Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes. Journal of Physical Chemistry B, 2017, 121, 2454-2467.	1.2	16
36	Influence of Density on Microwave Pyrolysis of Cellulose. ACS Sustainable Chemistry and Engineering, 2018, 6, 2916-2920.	3.2	16

#	Article	IF	CITATIONS
37	DPD simulations and experimental study on reduction-sensitive polymeric micelles self-assembled from PCL-SS-PPEGMA for doxorubicin controlled release. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111797.	2.5	16
38	Green preparation of tuneable carbon–silica composite materials from wastes. Journal of Materials Chemistry A, 2015, 3, 14148-14156.	5.2	15
39	Green power—"molten―starch adhesives. Journal of Materials Chemistry, 2009, 19, 8589.	6.7	13
40	Polymer Blend Nanocomposites: Effect of Selective Nanotube Location on the Properties of a Semicrystalline Thermoplastic-Toughened Epoxy Thermoset. Macromolecular Materials and Engineering, 2014, 299, 1430-1444.	1.7	13
41	Monolithic mesoporous graphitic composites as super capacitors: from Starbons to Starenes®. Journal of Materials Chemistry A, 2018, 6, 1119-1127.	5.2	13
42	Isolation and Characterization of Recovered Starch from Industrial Wastewater. Journal of Polymers and the Environment, 2011, 19, 971-979.	2.4	11
43	Exceptionally Stable Microporous Organic Frameworks with Rigid Building Units for Efficient Small Gas Adsorption and Separation. ACS Applied Materials & Interfaces, 2020, 12, 7548-7556.	4.0	11
44	Bio-based polymer nanocomposites based on nylon 11 and WS ₂ inorganic nanotubes. RSC Advances, 2015, 5, 17879-17887.	1.7	10
45	An Interesting Class of Porous Polymer—Revisiting the Structure of Mesoporous αâ€ <scp>d</scp> â€Polysaccharide Gels. ChemSusChem, 2016, 9, 280-288.	3.6	9
46	Thermal investigation of â€~molten starch'. Journal of Thermal Analysis and Calorimetry, 2011, 105, 577-581.	2.0	8
47	Simple Preparation of Novel Metal-Containing Mesoporous Starches. Materials, 2013, 6, 1891-1902.	1.3	8
48	Synthesis, Immobilization and Catalytic Activity of a Copper(II) Complex with a Chiral Bis(oxazoline). Molecules, 2014, 19, 11988-11998.	1.7	8
49	Adamantane-Based Micro- and Ultra-Microporous Frameworks for Efficient Small Gas and Toxic Organic Vapor Adsorption. Polymers, 2019, 11, 486.	2.0	7
50	Nanocomposite Materials with Poly(l-lactic Acid) and Transition-Metal Dichalcogenide Nanosheets 2D-TMDCs WS2. Polymers, 2020, 12, 2699.	2.0	7
51	Facile fabrication of eugenol-containing polysiloxane films with good optical properties and excellent thermal stability via Si–H chemistry. Journal of Materials Chemistry C, 0, , .	2.7	7
52	Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy. Analytical and Bioanalytical Chemistry, 2018, 410, 3649-3660.	1.9	6
53	Unveiling the reinforcement effects in cottonseed protein/polycaprolactone blend biocomposites. Composites Science and Technology, 2022, 225, 109480.	3.8	5
54	CHAPTER 10. Bulk and Surface Analysis of Carbonaceous Materials. RSC Green Chemistry, 2015, , 311-354.	0.0	3

#	Article	IF	CITATIONS
55	The Thermochemical Conversion of Biomass into High-Value Products: Microwave Pyrolysis. RSC Green Chemistry, 2013, , 38-63.	0.0	2
56	Other Approaches and the Commercialisation of Sustainable Carbonaceous Material Technology. RSC Green Chemistry, 2015, , 377-406.	0.0	1
57	Paramagnetic muon states in mesoporous carbon materials. Journal of Physics: Conference Series, 2014, 551, 012040.	0.3	0
58	Bio-based carbonaceous composite materials from epoxidised linseed oil, bio-derived curing agent and starch with controllable functionality. RSC Advances, 2017, 7, 24282-24290.	1.7	0
59	Uses of Waste Starch. RSC Green Chemistry, 2013, , 110-129.	0.0	0
60	Investigation of the Crystallization Kinetics and Melting Behaviour of Polymer Blend Nanocomposites Based on Poly(L-Lactic Acid), Nylon 11 and TMDCs WS2. Polymers, 2022, 14, 2692.	2.0	0