Norio Murata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5556734/publications.pdf

Version: 2024-02-01

288 papers 33,054 citations

100 h-index 171 g-index

293 all docs

293 docs citations

times ranked

293

15865 citing authors

#	Article	IF	CITATIONS
1	Photoinhibition of photosystem II under environmental stress. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 414-421.	1.0	1,231
2	How do environmental stresses accelerate photoinhibition?. Trends in Plant Science, 2008, 13, 178-182.	8.8	935
3	Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 2002, 5, 250-257.	7.1	802
4	Membrane fluidity and its roles in the perception of environmental signals. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 142-157.	2.6	761
5	The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell and Environment, 2002, 25, 163-171.	5.7	644
6	A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 742-749.	1.0	596
7	Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell and Environment, 2011 , 34 , $1-20$.	5.7	568
8	Inactivation of Photosynthetic Oxygen Evolution and Concomitant Release of Three Polypeptides in the Photosystem II Particles of Spinach Chloroplasts. Plant and Cell Physiology, 1982, 23, 533-539.	3.1	533
9	Control of excitation transfer in photosynthesis I. Light-induced change of chlorophyll a fluoresence in Porphyridium cruentum. Biochimica Et Biophysica Acta - Bioenergetics, 1969, 172, 242-251.	1.0	529
10	Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 2008, 13, 499-505.	8.8	515
11	lonic and Osmotic Effects of NaCl-Induced Inactivation of Photosystems I and II in Synechococcus sp.1. Plant Physiology, 2000, 123, 1047-1056.	4.8	487
12	Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992, 356, 710-713.	27.8	460
13	Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO Journal, 2001, 20, 5587-5594.	7.8	456
14	Structure and expression of fatty acid desaturases. Lipids and Lipid Metabolism, 1998, 1394, 3-15.	2.6	455
15	Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant Journal, 1997, 12, 133-142.	5.7	452
16	Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature, 1990, 347, 200-203.	27.8	408
17	Membrane Fluidity and Temperature Perception. Plant Physiology, 1997, 115, 875-879.	4.8	395
18	The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynthesis Research, 1995, 44, 243-252.	2.9	381

#	Article	IF	CITATIONS
19	Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage–repair cycle of Photosystem II in Synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1657, 23-32.	1.0	360
20	Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Journal of Experimental Botany, 2000, 51, 81-88.	4.8	357
21	Control of excitation transfer in photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1969, 189, 171-181.	1.0	355
22	Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold., 1998, 38, 1011-1019.		327
23	Two-Step Mechanism of Photodamage to Photosystem II: \hat{a} \in % Step 1 Occurs at the Oxygen-Evolving Complex and Step 2 Occurs at the Photochemical Reaction Center. Biochemistry, 2005, 44, 8494-8499.	2.5	309
24	Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiologia Plantarum, 2011, 142, 35-46.	5.2	294
25	Singlet Oxygen Inhibits the Repair of Photosystem II by Suppressing the Translation Elongation of the D1 Protein inSynechocystissp. PCC 6803â€. Biochemistry, 2004, 43, 11321-11330.	2.5	280
26	Salt Stress and Hyperosmotic Stress Regulate the Expression of Different Sets of Genes in Synechocystis sp. PCC 6803. Biochemical and Biophysical Research Communications, 2002, 290, 339-348.	2.1	273
27	Role of the 33-kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolution system and its replacement by chloride ions. FEBS Letters, 1984, 170, 350-354.	2.8	256
28	Molecular Species Composition of Phosphatidylglycerols from Chilling-Sensitive and Chilling-Resistant Plants. Plant and Cell Physiology, 1983, 24, 81-86.	3.1	254
29	The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803 Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9090-9094.	7.1	254
30	The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8787-8791.	7.1	248
31	Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6219-6223.	7.1	247
32	Salt Stress Inhibits the Repair of Photodamaged Photosystem II by Suppressing the Transcription and Translation of psbAGenes in Synechocystis A. Plant Physiology, 2002, 130, 1443-1453.	4.8	246
33	The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO Journal, 2000, 19, 1327-1334.	7.8	238
34	Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Molecular Microbiology, 2001, 40, 235-244.	2.5	238
35	Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant Journal, 2004, 40, 474-487.	5.7	233
36	Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Applied Microbiology and Biotechnology, 2014, 98, 8777-8796.	3.6	230

#	Article	IF	CITATIONS
37	Calcium ions can be substituted for the 24-kDa polypeptide in photosynthetic oxygen evolution. FEBS Letters, 1984, 168, 118-120.	2.8	218
38	Quantitative Analysis of the Inactivation of Photosynthetic Oxygen Evolution and the Release of Polypeptides and Manganese in the Photosystem II Particles of Spinach Chloroplasts. Plant and Cell Physiology, 1983, 24, 741-747.	3.1	204
39	Heat inactivation of oxygen evolution in Photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 807, 127-133.	1.0	202
40	Enhancement of the tolerance of Arabidopsisto high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant Journal, 1998, 16, 155-161.	5.7	202
41	Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Progress in Lipid Research, 2003, 42, 527-543.	11.6	198
42	Unsaturated Fatty Acids in Membrane Lipids Protect the Photosynthetic Machinery against Salt-Induced Damage inSynechococcus. Plant Physiology, 2001, 125, 1842-1853.	4.8	197
43	Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5862-5867.	7.1	196
44	The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Molecular Microbiology, 2002, 46, 905-915.	2.5	185
45	Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theoretical and Applied Genetics, 2002, 106, 51-57.	3.6	183
46	Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Letters, 1992, 296, 187-189.	2.8	176
47	The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1127-1133.	1.0	173
48	Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9061-9066.	7.1	170
49	Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. Journal of Plant Physiology, 2006, 163, 1179-1184.	3.5	170
50	Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends in Biochemical Sciences, 1985, 10, 122-124.	7.5	169
51	Temperature-Induced Changes in the Fatty Acid Composition of the Cyanobacterium, <i>Synechocystis</i> PCC6803. Plant Physiology, 1990, 92, 1062-1069.	4.8	167
52	Partial disintegration and reconstitution of the photosynthetic oxygen evolution system. Binding of 24 kilodalton and 18 kilodalton polypeptides. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 725, 87-93.	1.0	166
53	Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4273-4277.	7.1	165
54	Salt stress inhibits photosystems II and I in cyanobacteria. Photosynthesis Research, 2008, 98, 529-539.	2.9	160

#	Article	IF	CITATIONS
55	The Unsaturation of Membrane Lipids Stabilizes Photosynthesis against Heat Stress. Plant Physiology, 1994, 104, 563-567.	4.8	159
56	The SphS-SphR Two Component System Is the Exclusive Sensor for the Induction of Gene Expression in Response to Phosphate Limitation in Synechocystis. Journal of Biological Chemistry, 2004, 279, 13234-13240.	3.4	159
57	Positive Regulation of Sugar Catabolic Pathways in the Cyanobacterium Synechocystis sp. PCC 6803 by the Group 2 If Factor SigE. Journal of Biological Chemistry, 2005, 280, 30653-30659.	3.4	159
58	Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Current Opinion in Microbiology, 2002, 5, 208-210.	5.1	157
59	Differences in the control of the temperatureâ€dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Molecular Microbiology, 1997, 25, 1167-1175.	2.5	154
60	A RAPID AND EFFICIENT METHOD TO PREPARE CHLOROPHYLL A AND B FROM LEAVES. Photochemistry and Photobiology, 1980, 31, 183-185.	2.5	153
61	Temperature-Dependent Phase Behavior of Phosphatidylglycerols from Chilling-Sensitive and Chilling-Resistant Plants. Plant Physiology, 1984, 74, 1016-1024.	4.8	153
62	Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nature Biotechnology, 1996, 14, 1003-1006.	17.5	152
63	The Clâ ⁻ ' effect on photosynthetic oxygen evolution: interaction of Clâ ⁻ ' with 18-kDa, 24-kDa and 33-kDa proteins. FEBS Letters, 1985, 180, 303-308.	2.8	148
64	Systematic Analysis of the Relation of Electron Transport and ATP Synthesis to the Photodamage and Repair of Photosystem II in Synechocystis. Plant Physiology, 2005, 137, 263-273.	4.8	145
65	Identical Hik-Rre Systems Are Involved in Perception and Transduction of Salt Signals and Hyperosmotic Signals but Regulate the Expression of Individual Genes to Different Extents in Synechocystis. Journal of Biological Chemistry, 2005, 280, 21531-21538.	3.4	144
66	The function of 33-kDa protein in the photosynthetic oxygen-evolution system studied by reconstitution experiments. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 806, 283-289.	1.0	139
67	Inhibition of the repair of Photosystem II by oxidative stress in cyanobacteria. Photosynthesis Research, 2005, 84, 1-7.	2.9	139
68	Interruption of the Calvin cycle inhibits the repair of Photosystem II from photodamage. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 352-361.	1.0	139
69	Inactivation of Photosystems I and II in Response to Osmotic Stress in Synechococcus. Contribution of Water Channels. Plant Physiology, 2000, 122, 1201-1208.	4.8	137
70	The Use of Bacterial Choline Oxidase, a Glycinebetaine-Synthesizing Enzyme, to Create Stress-Resistant Transgenic Plants. Plant Physiology, 2001, 125, 180-188.	4.8	137
71	Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1509, 409-419.	2.6	136
72	Glycinebetaineâ€induced waterâ€stress tolerance in <i> codA</i> â€expressing transgenic <i>indica</i> rice is associated with upâ€regulation of several stress responsive genes. Plant Biotechnology Journal, 2009, 7, 512-526.	8.3	134

#	Article	IF	Citations
73	Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant, Cell and Environment, 2007, 30, 994-1005.	5.7	133
74	Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Reports, 2008, 27, 687-698.	5.6	133
75	Relationships between the Transition of the Physical Phase of Membrane Lipids and Photosynthetic Parameters in Anacystis nidulans and Lettuce and Spinach Chloroplasts. Plant Physiology, 1975, 56, 508-517.	4.8	132
76	Fluorescence of chlorophyll in photosynthetic systems III. Emission and action spectra of fluorescenceâ€"Three emission bands of chlorophyll a and the energy transfer between two pigment systems. Biochimica Et Biophysica Acta (BBA) - Biophysics Including Photosynthesis, 1966, 126, 234-243.	2.3	131
77	From The Cover: Functional expression of a $\hat{A}12$ fatty acid desaturase gene from spinach in transgenic pigs. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6361-6366.	7.1	131
78	Gene Expression Profiling Reflects Physiological Processes in Salt Acclimation of Synechocystis sp. Strain PCC 6803. Plant Physiology, 2004, 136, 3290-3300.	4.8	131
79	Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Molecular Biology, 1995, 29, 897-907.	3.9	128
80	Gene-engineered Rigidification of Membrane Lipids Enhances the Cold Inducibility of Gene Expression in Synechocystis. Journal of Biological Chemistry, 2003, 278, 12191-12198.	3.4	127
81	Nitrogen Induction of Sugar Catabolic Gene Expression in Synechocystis sp. PCC 6803. DNA Research, 2006, 13, 185-195.	3.4	127
82	Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9959-9963.	7.1	126
83	[24] Membrane lipids. Methods in Enzymology, 1988, 167, 251-259.	1.0	122
84	Five Histidine Kinases Perceive Osmotic Stress and Regulate Distinct Sets of Genes in Synechocystis. Journal of Biological Chemistry, 2004, 279, 53078-53086.	3.4	120
85	The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Lipids and Lipid Metabolism, 1991, 1084, 13-20.	2.6	118
86	Temperature Dependence of Chlorophyll <i>a</i> Fluorescence in Relation to the Physical Phase of Membrane Lipids Algae and Higher Plants. Plant Physiology, 1975, 56, 791-796.	4.8	117
87	Low-temperature effects on cyanobacterial membranes. Journal of Bioenergetics and Biomembranes, 1989, 21, 61-75.	2.3	117
88	Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Molecular Biology, 1999, 40, 279-288.	3.9	117
89	Enhanced formation of flowers in salt-stressedArabidopsisafter genetic engineering of the synthesis of glycine betaine. Plant Journal, 2003, 36, 165-176.	5.7	116
90	Glycerolipids in various preparations of Photosystem II from spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1019, 261-268.	1.0	115

#	Article	IF	Citations
91	Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant Journal, 2000, 22, 449-453.	5 . 7	115
92	Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis. Lipids and Lipid Metabolism, 1980, 619, 353-366.	2.6	114
93	The mode of binding of three extrinsic proteins of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex of spinach. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 977, 315-321.	1.0	112
94	Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. Journal of Plant Physiology, 2003, 160, 41-49.	3.5	112
95	Glycerol-3-phosphate acyltransferase in plants. Lipids and Lipid Metabolism, 1997, 1348, 10-16.	2.6	111
96	Purification and characterization of 33 kilodalton protein of spinach chloroplasts. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1979, 581, 228-236.	1.7	110
97	Fluorescence of chlorophyll in photosynthetic systems II. Induction of fluorescence in isolated spinach chloroplasts. Biochimica Et Biophysica Acta (BBA) - Biophysics Including Photosynthesis, 1966, 120, 23-33.	2.3	108
98	ATP is a driving force in the repair of photosystem II during photoinhibition. Plant, Cell and Environment, 2018, 41, 285-299.	5.7	107
99	Control of excitation transfer in photosynthesis. III. Light-induced decrease of chlorophyll a fluorescence related to photophosphorylation system in spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1969, 189, 182-192.	1.0	106
100	An Increase in Unsaturation of Fatty Acids in Phosphatidylglycerol from Leaves Improves the Rates of Photosynthesis and Growth at Low Temperatures in Transgenic Rice Seedlings. Plant and Cell Physiology, 2002, 43, 751-758.	3.1	106
101	The temperatureâ€dependent expression of the desaturase gene <i>desA</i> in <i>Synechocystis</i> PCC6803. FEBS Letters, 1993, 318, 57-60.	2.8	104
102	Glucosylglycerol, a Compatible Solute, Sustains Cell Division under Salt Stress. Plant Physiology, 2003, 131, 1628-1637.	4.8	103
103	The essential role of phosphatidylglycerol in photosynthesis. Photosynthesis Research, 2007, 92, 205-215.	2.9	103
104	Membrane Lipid Unsaturation Modulates Processing of the Photosystem II Reaction-Center Protein D1 at Low Temperatures. Plant Physiology, 1997, 114, 841-849.	4.8	102
105	Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Journal of Plant Physiology, 2011, 168, 1286-1294.	3.5	99
106	A Bacterial Transgene for Catalase Protects Translation of D1 Protein during Exposure of Salt-Stressed Tobacco Leaves to Strong Light. Plant Physiology, 2007, 145, 258-265.	4.8	98
107	Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant, Cell and Environment, 1998, 21, 232-239.	5.7	96
108	Thioredoxin peroxidase in the CyanobacteriumSynechocystissp. PCC 6803. FEBS Letters, 1999, 447, 269-273.	2.8	95

#	Article	IF	CITATIONS
109	Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Letters, 2000, 466, 107-111.	2.8	95
110	Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron-transport and phosphorylation reactions in Synechocystis PCC6803. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1142, 1-5.	1.0	94
111	The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp. strain PCC 7942 to low temperature. Journal of Bacteriology, 1997, 179, 339-344.	2.2	91
112	Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1363-1371.	1.0	91
113	Effect of Growth Temperature on the Lipid and Fatty Acid Composition, and the Dependence on Temperature of Light-induced Redox Reactions of Cytochrome <i>f</i> and of Light Energy Redistribution in the Thermophilic Blue-Green Alga <i>Synechococcus lividus</i> Plant Physiology, 1979. 63. 524-530.	4.8	90
114	Isolation and characterization of three types of membranes from the cyanobacterium (blue-green) Tj $ETQq0\ 0\ 0$	rgBT/Ove	rlock 10 Tf 50
115	The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Molecular Biology, 1993, 21, 267-277.	3.9	90
116	Cloning of ?3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Molecular Biology, 1994, 26, 249-263.	3.9	89
117	Functional Expression in Escherichia coli of Low-Affinity and High-Affinity Na + (Li +)/H + Antiporters of Synechocystis. Journal of Bacteriology, 2001, 183, 1376-1384.	2.2	89
118	The Histidine Kinase Hik34 Is Involved in Thermotolerance by Regulating the Expression of Heat Shock Genes in Synechocystis. Plant Physiology, 2005, 138, 1409-1421.	4.8	89
119	Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp. PCC 6803. Plant Journal, 2007, 49, 313-324.	5.7	89
120	Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. Journal of Photochemistry and Photobiology B: Biology, 1996, 34, 149-157.	3.8	88
121	Effect of the 33-kDa protein on the S-state transitions in photosynthetic oxygen evolution. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890, 151-159.	1.0	86
122	Glycinebetaine Counteracts the Inhibitory Effects of Salt Stress on the Degradation and Synthesis of D1 Protein during Photoinhibition in Synechococcus sp. PCC 7942. Plant Physiology, 2006, 141, 758-765.	4.8	86
123	[23] Isolation of cyanobacterial plasma membranes. Methods in Enzymology, 1988, 167, 245-251.	1.0	85
124	Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Molecular Biology, 2001, 45, 133-144.	3.9	85
125	Effects of divalent metal ions on chlorophyll a fluorescence in isolated spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1970, 197, 250-256.	1.0	83
126	Effects of monovalent cations on light energy distribution between two pigment systems of photosynthesis in isolated spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1971, 226, 422-432.	1.0	83

#	Article	IF	CITATIONS
127	Genetic Enhancement of the Ability to Tolerate Photoinhibition by Introduction of Unsaturated Bonds into Membrane Glycerolipids. Plant Physiology, 1997, 115, 551-559.	4.8	82
128	Analysis of the Structure, Substrate Specificity, and Mechanism of Squash Glycerol-3-Phosphate (1)-Acyltransferase. Structure, 2001, 9, 347-353.	3.3	82
129	Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant, Cell and Environment, 2011, 34, 1931-1943.	5.7	82
130	Chilling Susceptibility of the Blue-green Alga <i>Anacystis nidulans</i> . Plant Physiology, 1981, 67, 176-181.	4.8	81
131	Evidence that a chlorophylla' dimer constitutes the photochemical reaction centre 1 (P700) in photosynthetic apparatus. FEBS Letters, 1985, 191, 252-256.	2.8	81
132	Complete amino acid sequence of 33 kDa protein isolated from spinach photosystem II particles. FEBS Letters, 1986, 197, 63-66.	2.8	81
133	Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 198-205.	1.0	81
134	Protection of the oxygen-evolving photosystem II complex by glycinebetaine. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1057, 361-366.	1.0	80
135	Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. Journal of Experimental Botany, 2006, 57, 235-247.	4.8	80
136	Chlorophyll a′/P-700 and pheophytin a/P-680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysis. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 936, 81-89.	1.0	78
137	Title is missing!. Molecular Breeding, 1998, 4, 269-275.	2.1	77
138	A Two-Component Mn2+-Sensing System Negatively Regulates Expression of the mntCAB Operon in Synechocystis. Plant Cell, 2002, 14, 2901-2913.	6.6	76
139	Proteomic analysis of the heat shock response inSynechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinaseâ€34 gene. Proteomics, 2006, 6, 845-864.	2.2	75
140	Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynthesis Research, 2007, 94, 217-224.	2.9	75
141	Identification of a new gene in the chloroplast genome encoding a low-molecular-mass polypeptide of photosystem II complex. FEBS Letters, 1988, 235, 283-288.	2.8	74
142	PsbU, a Protein Associated with Photosystem II, Is Required for the Acquisition of Cellular Thermotolerance in Synechococcus species PCC 70021. Plant Physiology, 1999, 120, 301-308.	4.8	74
143	Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Letters, 1988, 238, 424-430.	2.8	72
144	Photosynthetic Oxygen Evolution Is Stabilized by Cytochrome c550 against Heat Inactivation in Synechococcus sp. PCC 7002. Plant Physiology, 1994, 105, 1313-1319.	4.8	72

#	Article	IF	Citations
145	Control of excitation transfer in photosynthesis V. Correlation of membrane structure to regulation of excitation transfer between two pigment systems in isolated spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1971, 245, 365-372.	1.0	71
146	Enhanced germination under high-salt conditions of seeds of transgenicArabidopsis with a bacterial gene (codA) for choline oxidase. Journal of Plant Research, 1998, 111, 357-362.	2.4	71
147	Characterization of ÂA9 Acyl-lipid Desaturase Homologues from Arabidopsis thaliana. Plant and Cell Physiology, 1998, 39, 247-253.	3.1	69
148	Partial degradation of the 18-kDa protein of the photosynthetic oxygen-evolving complex: A study of a binding site. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 850, 146-155.	1.0	67
149	Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiology Letters, 2006, 152, 313-320.	1.8	66
150	Control of excitation transfer in photosynthesis. IV. Kinetics of chlorophyll a fluorescence in Porphyra yezoensis. Biochimica Et Biophysica Acta - Bioenergetics, 1970, 205, 379-389.	1.0	65
151	In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. Journal of Bacteriology, 1993, 175, 544-547.	2.2	65
152	DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. Molecular BioSystems, 2009, 5, 1904.	2.9	65
153	Lipid-Linked Desaturation of Palmitic Acid in Monogalactosyl Diacylglycerol in the Blue-Green Alga (Cyanobacterium) Anabaena variabilis Studied in Vivo. Plant and Cell Physiology, 1986, 27, 819-835.	3.1	64
154	Site-directed mutagenesis of histidine residues in the Δ12 acyl-lipid desaturase of Synechocystis. FEBS Letters, 1995, 361, 111-114.	2.8	64
155	Acclimation of the Photosynthetic Machinery to High Temperature in Chlamydomonas reinhardtii Requires Synthesis de Novo of Proteins Encoded by the Nuclear and Chloroplast Genomes. Plant Physiology, 2000, 124, 441-450.	4.8	64
156	Evidence that the amino-terminus of the 33 kDa extrinsic protein is required for binding to the Photosystem II complex. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 977, 219-226.	1.0	61
157	Direct Evaluation of Effects of Fatty-Acid Unsaturation on the Thermal Properties of Photosynthetic Activities, as Studied by Mutation and Transformation of Synechocystis PCC6803. Plant and Cell Physiology, 1991, 32, 205-211.	3.1	61
158	delta 9 Acyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions, and polar head groups. Journal of Biological Chemistry, 1994, 269, 25576-80.	3.4	61
159	Light-dependent inactivation of photosynthetic oxygen evolution during NaCl treatment of photosystem II particles: The role of the 24-kDa protein. Photosynthesis Research, 1986, 10, 489-496.	2.9	60
160	Low unsaturation level of thylakoid membrane lipids limits turnover of the D1 protein of photosystem II at high irradiance. FEBS Letters, 1995, 364, 239-242.	2.8	60
161	Effect of urea on Photosystem II particles. Evidence for an essential role of the 33 kilodalton polypeptide in photosynthetic oxygen evolution. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 765, 253-257.	1.0	59
162	Title is missing!. Molecular Breeding, 2000, 6, 501-510.	2.1	59

#	Article	IF	Citations
163	Protection by α-tocopherol of the repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 236-241.	1.0	58
164	Thermal Protection of the Oxygen-Evolving Machinery by PsbU, an Extrinsic Protein of Photosystem II, in Synechococcus species PCC 7002. Plant Physiology, 1997, 115, 1473-1480.	4.8	57
165	Chilling-Susceptibility of the Blue-Green Alga Anacystis nidulans. Plant Physiology, 1982, 69, 125-129.	4.8	56
166	Cytochromes and prenylquinones in preparations of cytoplasmic and thylakoid membranes from the cyanobacterium (blue-green alga) Anacystis nidulans. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 766, 395-402.	1.0	56
167	Glycinebetaine enhances and stabilizes the evolution of oxygen and the synthesis of ATP by cyanobacterial thylakoid membranes. FEBS Letters, 1991, 294, 271-274.	2.8	56
168	Identification of conserved domains in the ?12 desaturases of cyanobacteria. Plant Molecular Biology, 1994, 24, 643-650.	3.9	54
169	Histidine kinase Hik33 is an important participant in cold-signal transduction in cyanobacteria. Physiologia Plantarum, 2006, 126, 17-27.	5.2	54
170	Chilling Susceptibility of the Blue-green Alga Anacystis nidulans. Plant Physiology, 1981, 67, 182-187.	4.8	53
171	An improved purification method and a further characterization of the 33-kilodalton protein of spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 680, 210-215.	1.0	53
172	Quinone and pheophytin in the photosynthetic reaction center II from spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 765, 403-405.	1.0	53
173	Partial reconstitution of the photosynthetic oxygen evolution system by rebinding of the 33-kDa polypeptide. FEBS Letters, 1983, 164, 375-378.	2.8	51
174	Osmotic shrinkage of cells of Synechocystis sp. PCC 6803 by water efflux via aquaporins regulates osmostress-inducible gene expression. Microbiology (United Kingdom), 2005, 151, 447-455.	1.8	51
175	A trans-unsaturated fatty acid in a psychrophilic bacterium, Vibrio sp. strain ABE-1. Journal of Bacteriology, 1990, 172, 3515-3518.	2.2	50
176	Alteration of low-temperature susceptibility of the cyanobacterium Synechococcus sp. PCC 7002 by genetic manipulation of membrane lipid unsaturation. Archives of Microbiology, 1997, 169, 20-28.	2.2	50
177	The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnology Journal, 2007, 5, 422-430.	8.3	50
178	Genetically Engineered Enhancement of Salt Tolerance in Higher Plants. , 1998, , 133-148.		50
179	Fluorescence of chlorophyll in photosynthetic systems IV. Induction of various emissions at low temperatures. Biochimica Et Biophysica Acta - Bioenergetics, 1968, 162, 106-121.	1.0	49
180	The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for delta 12 desaturase. Journal of Bacteriology, 1993, 175, 6056-6058.	2.2	49

#	Article	IF	Citations
181	Structural Consequences of Genetically Engineered Saturation of the Fatty Acids of Phosphatidylglycerol in Tobacco Thylakoid Membranes. An FTIR Studyâ€. Biochemistry, 2003, 42, 4292-4299.	2.5	49
182	An in Vivo Study of Substrate Specificities of Acyl-Lipid Desaturases and Acyltransferases in Lipid Synthesis in Synechocystis PCC6803. Plant Physiology, 1993, 102, 1275-1278.	4.8	47
183	Electron-transport reactions in cytoplasmic and thylakoid membranes prepared from the cyanobacteria (blue-green algae) Anacystis nidulans and Synechocystis PCC 6714. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 810, 354-361.	1.0	46
184	Very strong UV-A light temporally separates the photoinhibition of photosystem II into light-induced inactivation and repair. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 123-129.	1.0	46
185	Psychrophilic Pseudomonas syringae requires trans-monounsaturated fatty acid for growth at higher temperature. Extremophiles, 2004, 8, 401-410.	2.3	45
186	A genetically engineered increase in fatty acid unsaturation in Synechococcus sp. PCC 7942 allows exchange of D1 protein forms and sustenance of photosystem II activity at low temperature. FEBS Journal, 1998, 251, 641-648.	0.2	44
187	Genetic modification of the fatty acid unsaturation of phosphatidylglycerol in chloroplasts alters the sensitivity of tobacco plants to cold stress. Plant, Cell and Environment, 2004, 27, 99-105.	5.7	42
188	Absorption and Fluorescence Emission by Intact Cells, Chloroplasts, and Chlorophyll–Protein Complexes. , 1986, , 137-159.		41
189	Balanced regulation of expression of the gene for cytochromecMand that of genes for plastocyanin and cytochromec6inSynechocystis. FEBS Letters, 1999, 444, 281-284.	2.8	41
190	Protection against the photo-induced inactivation of the photosystem II complex by abscisic acid. Plant, Cell and Environment, 2000, 23, 711-718.	5.7	41
191	Proteomic study of the soluble proteins from the unicellular cyanobacterium Synechocystis sp. PCC6803 using automated matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting. Proteomics, 2002, 2, 1735-1742.	2.2	41
192	Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: effect of fatty acid desaturation. FEBS Letters, 2003, 553, 295-298.	2.8	41
193	Eukaryotic-like Ser/Thr Protein Kinases SpkC/F/K Are Involved in Phosphorylation of GroES in the Cyanobacterium Synechocystis. DNA Research, 2011, 18, 137-151.	3.4	41
194	Cis?trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles, 2005, 9, 117-125.	2.3	40
195	Relationship between O2 evolution capacity and cytochrome b-559 high-potential form in Photosystem II particles. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 808, 348-351.	1.0	39
196	Heat shock protein synthesis of the cyanobacterium Synechocystis PCC 6803: purification of the GroEL-related chaperonin. Plant Molecular Biology, 1992, 18, 327-336.	3.9	39
197	Very-long-chain saturated fatty acids in phosphatidylserine from higher plant tissues. Lipids and Lipid Metabolism, 1984, 795, 147-150.	2.6	38
198	Senescence-induced expression of a homologue of ?9 desaturase in rose petals. Plant Molecular Biology, 1995, 29, 627-635.	3.9	38

#	Article	IF	CITATIONS
199	Immunocytochemical localization of acyl-lipid desaturases in cyanobacterial cells: evidence that both thylakoid membranes and cytoplasmic membranes are sites of lipid desaturation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10524-10527.	7.1	36
200	Red and far-red light alter the transcript profile in the cyanobacteriumSynechocystissp. PCC 6803: Impact of cyanobacterial phytochromes. FEBS Letters, 2005, 579, 1613-1618.	2.8	36
201	Studies on the delayed light emission in spinach chloroplasts. I. Nature of two phases in development of the millisecond delayed light emission during intermittent illumination. Biochimica Et Biophysica Acta - Bioenergetics, 1971, 245, 109-120.	1.0	35
202	Relationship between growth temperature of Anacystis nidulans and phase transition temperature of its thylakoid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1980, 602, 673-675.	2.6	35
203	Cloning of Brassica napus CTP:phosphocholine cytidylyltransferase cDNAs by complementation in a yeast cct mutant. Plant Molecular Biology, 1996, 31, 205-211.	3.9	35
204	A novel î"9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the snâ 2 position of glycerolipids. Biochemical Journal, 2006, 398, 207-214.	3.7	35
205	The discovery of state transitions in photosynthesis 40Âyears ago. Photosynthesis Research, 2009, 99, 155-160.	2.9	35
206	Fluorescence of chlorophyll in photosynthetic systems I. Analysis of "weak light effect―in isolated chloroplasts. Biochimica Et Biophysica Acta (BBA) - Biophysics Including Photosynthesis, 1966, 112, 213-222.	2.3	34
207	Characterization of the Fad12 mutant of Synechocystis that is defective in î"12 acyl-lipid desaturase activity. Lipids and Lipid Metabolism, 1996, 1299, 117-123.	2.6	34
208	ORGANIZATION OF THE PHOTOSYNTHETIC OXYGEN EVOLUTION SYSTEM., 1983,, 213-222.		34
209	Partial degradation of the extrinsic 23-kDa protein of the Photosystem II complex of spinach. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 936, 465-474.	1.0	33
210	Nucleotide sequence of a cDNA clone encoding a precursor to stearoyl-(acyl-carrier-protein) desaturase from spinach, Spinacia oleracea. Plant Molecular Biology, 1992, 19, 711-713.	3.9	33
211	Identification of Components Associated with Thermal Acclimation of Photosystem II in Synechocystis sp. PCC6803. PLoS ONE, 2010, 5, e10511.	2.5	33
212	Temperature dependence of the light-induced spectral shift of carotenolds in Cyanidium caldarium and higher plant leaves. Evidence for an effect of the physical phase of chloroplast membrane lipids on the permeability of the membrane to ions. Biochimica Et Biophysica Acta - Bioenergetics, 1977, 461, 365-378.	1.0	32
213	Transition of lipid phase in aqueous dispersions of diacylglyceryltrimethylhomoserine. Lipids and Lipid Metabolism, 1991, 1082, 108-111.	2.6	32
214	An RNA helicase, CrhR, regulates the low-temperature-inducible expression of heat-shock genes groES, groEL1 and groEL2 in Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 2010, 156, 442-451.	1.8	32
215	CORRELATION BETWEEN DELAYED LIGHT EMISSION AND FLUORESCENCE OF CHLOROPHYLL a IN SYSTEM II PARTICLES DERIVED FROM SPINACH CHLOROPLASTS. Photochemistry and Photobiology, 1973, 18, 209-218.	2.5	31
216	Temperature dependence of the photosynthetic activities in the thylakoid membranes from the blue-green alga Anacystis nidulans. Biochimica Et Biophysica Acta - Bioenergetics, 1979, 545, 69-76.	1.0	31

#	Article	IF	CITATIONS
217	The role of CP 47 in the evolution of oxygen and the binding of the extrinsic 33-kDa protein to the core complex of Photosystem II as determined by limited proteolysis. Photosynthesis Research, 1993, 36, 35-42.	2.9	31
218	A New Type of Cytochrome c from Synechocystis PCC6803. Journal of Plant Physiology, 1994, 144, 259-264.	3.5	31
219	Serine/Threonine Protein Kinase SpkA in Synechocystis sp. Strain PCC 6803 Is a Regulator of Expression of Three Putative pilA Operons, Formation of Thick Pili, and Cell Motility. Journal of Bacteriology, 2006, 188, 7696-7699.	2.2	31
220	Membrane Lipids in Cyanobacteria. , 1998, , 65-81.		30
221	Proteomic Study of the Impact of Hik33 Mutation in <i>Synechocystis</i> sp. PCC 6803 under Normal and Salt Stress Conditions. Journal of Proteome Research, 2012, 11, 502-514.	3.7	30
222	Temperature dependence of the delayed fluorescence of chlorophyll a in blue-green algae. Biochimica Et Biophysica Acta - Bioenergetics, 1977, 460, 220-229.	1.0	29
223	A method to probe the cytoplasmic osmolality and osmotic water and solute fluxes across the cell membrane of cyanobacteria with chlorophyll a fluorescence: Experiments with Synechococcus sp. PCC7942. Physiologia Plantarum, 1998, 103, 215-224.	5.2	29
224	OXIDATIONâ€REDUCTION REACTIONS OF P700 AND CYTOCHROME <i>f</i> i> IN FRACTION 1 PARTICLES PREPARED FROM SPINACH CHLOROPLASTS BY FRENCH PRESS TREATMENT. Photochemistry and Photobiology, 1971, 13, 33-44.	2.5	28
225	Preparation of chlorophyll a, chlorophyll b and bacteriochlorophyll a by means of column chromatography with diethylaminoethylcellulose. Biochimica Et Biophysica Acta - Bioenergetics, 1978, 501, 103-111.	1.0	28
226	Biochemical characterization of a \hat{i} "12 acyl-lipid desaturase after overexpression of the enzyme in Escherichia coli. Lipids and Lipid Metabolism, 1998, 1390, 323-332.	2.6	27
227	Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid, 2014, 72, 18-28.	1.4	25
228	Analyses of absorption and fluorescence spectra of water-soluble chlorophyll proteins, pigment System II particles and chlorophyll a in diethylether solution by the curve-fitting method. Biochimica Et Biophysica Acta - Bioenergetics, 1978, 503, 107-119.	1.0	24
229	Optical Study of Cytochrome cM Formation in Synechocystis. IUBMB Life, 2001, 51, 93-97.	3.4	24
230	Stabilization of the oxygen-evolving complex of photosystem II bybicarbonate and glycinebetaine in thylakoid and subthylakoidpreparations. Functional Plant Biology, 2003, 30, 797.	2.1	24
231	Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Journal of Experimental Botany, 2000, 51, 81-88.	4.8	23
232	Dissecting a cyanobacterial proteolytic system: efficiency in inducing degradation of the D1 protein of photosystem II in cyanobacteria and plants. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1607, 131-140.	1.0	23
233	Lipids in Photosynthesis: An Overview. , 1998, , 1-20.		23
234	Irreversible photoinhibition of photosystem II is caused by exposure of Synechocystis cells to strong light for a prolonged period. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 342-351.	1.0	22

#	Article	IF	CITATIONS
235	Photosynthetic electron transport and phosphorylation reactions in thylakoid membranes from the blue-green alga Anacystis nidulans. Biochimica Et Biophysica Acta - Bioenergetics, 1978, 502, 477-485.	1.0	21
236	Dissection of Photodamage at Low Temperature and Repair in Darkness Suggests the Existence of an Intermediate Form of Photodamaged Photosystem IIâ€. Biochemistry, 2003, 42, 14277-14283.	2.5	21
237	Reconstruction of the Water-Oxidizing Complex in Manganese-Depleted Photosystem II Preparations Using Mononuclear Manganese Complexes. Photochemistry and Photobiology, 1999, 70, 57-63.	2.5	19
238	Temperature dependence of delayed light emission in spinach chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1974, 333, 525-534.	1.0	17
239	Both the anaerobic pathway and aerobic desaturation are involved in the synthesis of unsaturated fatty acids in Vibriosp. strain ABE-1. FEBS Letters, 1992, 297, 9-12.	2.8	17
240	Acyl-(acyl-carrier protein) hydrolase from squash cotyledons specific to long-chain fatty acids: purification and characterization. Plant Molecular Biology, 1992, 20, 199-206.	3.9	17
241	<italic>Synechocystis</italic> PCC6803 Mutants Defective in Desaturation of Fatty Acids. Plant and Cell Physiology, 0, , .	3.1	16
242	Desaturase genes in a psychrotolerant Nostoc sp. are constitutively expressed at low temperature. Biochemical and Biophysical Research Communications, 2007, 362, 81-87.	2.1	16
243	Sensing and Responses to Low Temperature in Cyanobacteria. Cell and Molecular Response To Stress, 2002, 3, 139-153.	0.4	15
244	The irreversible photoinhibition of the photosystem II complex in leaves of Vicia faba under strong light. Plant Science, 1997, 130, 151-158.	3.6	14
245	Temperature dependence of chlorophyll $\hat{l}\pm$ fluorescence in lettuce and spinach chloroplasts at sub-zero temperatures 1. Plant and Cell Physiology, 1977, 18, 1265-1271.	3.1	13
246	Regulatory Roles in Photosynthesis of Unsaturated Fatty Acids in Membrane Lipids. Advances in Photosynthesis and Respiration, 2009, , 373-388.	1.0	13
247	Prasanna K. Mohanty (1934–2013): a great photosynthetiker and a wonderful human being who touched the hearts of many. Photosynthesis Research, 2014, 122, 235-260.	2.9	13
248	Photochemical Activities of Bacteriochlorophyll in Aerobically Grown Cells of Aerobic Heterotrophs, <italic>Erythrobacter</italic> Species (OCh 114) and <italic>Erythrobacter longus</italic> (OCh 101). Plant and Cell Physiology, 1982, , .	3.1	12
249	Title is missing!. Photosynthesis Research, 1998, 57, 81-91.	2.9	12
250	Thermal Analysis of Membrane Lipids from the Blue-Green Algae Anacystis nidulans and Anabaena variabilis. Plant and Cell Physiology, 1983, 24, 635-639.	3.1	11
251	No coordinated transcriptional regulation of the sod-kat antioxidative system in Synechocystis sp. PCC 6803. Journal of Plant Physiology, 2002, 159, 805-807.	3.5	10
252	Functional expression of a humanized gene for an ω-3 fatty acid desaturase from scarlet flax in transfected bovine adipocytes and bovine embryos cloned from the cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 183-190.	2.4	10

#	Article	IF	Citations
253	Regulation by Environmental Conditions of the Repair of Photosystem II in Cyanobacteria. Advances in Photosynthesis and Respiration, 2008, , 193-203.	1.0	10
254	Bioenergetic responses of Synechocystis 6803 fatty acid desaturase mutants at low temperatures. Journal of Bioenergetics and Biomembranes, 2001, 33, 135-141.	2.3	9
255	The effect of light intensity on the assay of the low temperature limit of photosynthesis using msec delayed light emission. Photosynthesis Research, 1990, 23, 319-323.	2.9	8
256	Title is missing!. Photosynthesis Research, 1999, 59, 125-136.	2.9	8
257	LIPID PHASE OF MEMBRANE AND CHILLING INJURY IN THE BLUE-GREEN ALGA, ANACYSTIS NIDULANS. , 1979, , 337-345.		8
258	Molecular Mechanisms of the Low-Temperature Tolerance of the Photosynthetic Machinery. , 1998, , 93-112.		8
259	Light-induced absorbance changes in Fraction I particles prepared from spinach chloroplasts by French-press treatment. Biochimica Et Biophysica Acta - Bioenergetics, 1971, 245, 356-364.	1.0	6
260	Properties of the Plastidial Acyl-(Acyl-Carrier-Protein): Glycerol-3-Phosphate Acyltransferase from the Chilling-Sensitive Plant Squash (<italic>Cucurbita moschata</italic>). Plant and Cell Physiology, 0, , .	3.1	6
261	Biosynthesis ofLinolenic Acid in the Cyanobacterium Spirulina platensis. , 1996, , .		6
262	Acclimation of photosystem II to high temperature in a suspension culture of soybean (Glycine max) cells requires proteins that are associated with the thylakoid membrane. Photosynthesis Research, 2007, 90, 223-232.	2.9	6
263	High myristic acid content in the cyanobacterium Cyanothece sp. PCC 8801 results from substrate specificity of lysophosphatidic acid acyltransferase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 939-947.	2.4	6
264	CHARACTERIZATION OF 33-KILODALTON, 24-KILODALTON, AND 18-KILODALTON PROTEINS IN THE PHOTOSYNTHETIC OXYGEN EVOLUTION SYSTEM OF SPINACH CHLOROPLASTS. , 1983, , 223-228.		6
265	Is the Membrane the Primary Target in the Biological Perception of Temperature? Effect of Membrane Physical State on the Expression of Stress-Defence Genes., 1995,, 369-371.		5
266	Sensors of abiotic stress in Synechocystis. Topics in Current Genetics, 0, , 103-119.	0.7	5
267	Genetic Engineering of the Unsaturation of Membrane Glycerolipid: Effects on the Ability of the Photosynthetic Machinery to Tolerate Temperature Stress., 1998,, 249-262.		5
268	The Lipid Phase of Photosynthetic Membranes. , 1984, , 131-138.		5
269	Identification of a cold-regulated RNA-binding protein from the marine cyanobacteriumSynechococcus sp. PCC7002. Journal of Plant Research, 1997, 110, 405-410.	2.4	4
270	Optical Study of Cytochrome c M Formation in Synechocystis. IUBMB Life, 2001, 51, 93-97.	3.4	4

#	Article	IF	Citations
271	The coxD gene for heme O synthase in Synechocystis. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1273, 84-86.	1.0	3
272	Lipids in Thylakoid Membranes and Photosynthetic Cells. Advances in Photosynthesis and Respiration, 2009, , 1-9.	1.0	3
273	Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiology Letters, 1997, 152, 313-320.	1.8	3
274	Genetic Engineering of Biosynthesis of Glycinebetaine Enhances Tolerance to Various Stress. , 2000, , 95-104.		2
275	The Cyanobacterial Desaturases: Aspects of Their Structure and Regulation. , 1995, , 3-8.		2
276	The Lipid Phase of Thylakoid and Cytoplasmic Membranes from the Blue-Green Algae (Cyanobacteria), <italic>Anacystis nidulans</italic> and <italic>Anabaena variabilis</italic> . Plant and Cell Physiology, 1984, , .	3.1	1
277	Sensors and Signal Transducers of Environmental Stress in Cyanobacteria. , 2009, , 15-31.		1
278	Role of Psbu, an Extrinsic Protein of Photosystem II, In the Acquisition of Thermotolerance in Synechococcus sp. PCC 7002., 1998,, 2449-2452.		1
279	Properties of Acyl-(Acyl-Carrier Protein): Glycerol-3-Phosphate Acyltransferase from Greening Squash Cotyledons., 1987,, 541-543.		1
280	On the Mechanism of Betaine Protection of Photosynthetic Structures in High Salt Environment. , 1990, , 957-960.		1
281	Inactivation of photosynthetic oxygen evolution by o-phenanthroline and LiClO4 in Photosystem 2 of the pea. Photosynthesis Research, 1993, 35, 345-349.	2.9	0
282	Unique Characteristics of Cyanobacterial Glycerolipids. , 1987, , 603-612.		0
283	Proteolytic Digestion of the N-Terminus of the Extrinsic 33-kDa Protein of the Photosystem II Complex., 1990,, 937-940.		0
284	Lipids in Spinach Photosystem II. , 1990, , 403-406.		0
285	Thylakoids from Salt-Stressed Spinacea Oleracea are More Active in Photosynthetic Oxygen Evolution and More Tolerant of Alkaline pH Than Thylakoids from Unstressed Plants., 1995,, 3609-3612.		0
286	The Genetic Manipulation of Fatty Acid Desaturation in Cyanobacteria. Journal of Japan Oil Chemists Society, 1995, 44, 767-776.	0.1	0
287	Genetic Engineering of Photosynthetic Capability under Temperature and Salinity Stresses. , 1995, , 3727-3734.		0
288	Genes for Fatty Acid Desaturases and Choline Oxidase are Responsible for Tolerance to Low-Temperature and Salinity Stresses in Cyanobacteria and Plants., 1996,, 55-63.		0