Cheng Wei Qiu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5556692/cheng-wei-qiu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 21,613 418 127 h-index g-index citations papers 28,237 481 11.4 7.47 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
418	Reciprocity of thermal diffusion in time-modulated systems <i>Nature Communications</i> , 2022 , 13, 167	17.4	4
417	Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. <i>ELight</i> , 2022 , 2,		48
416	Schrdinger's red pixel by quasi-bound-states-in-the-continuum Science Advances, 2022, 8, eabm4512	14.3	9
415	Passive ultra-conductive thermal metamaterials Advanced Materials, 2022, e2200329	24	2
414	Can Weak Chirality Induce Strong Coupling between Resonant States?. <i>Physical Review Letters</i> , 2022 , 128, 146102	7.4	6
413	Observation of Weyl exceptional rings in thermal diffusion <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2110018119	11.5	1
412	Diffusive Fizeau Drag in Spatiotemporal Thermal Metamaterials <i>Physical Review Letters</i> , 2022 , 128, 14	5 9 0 ₄ 1	3
411	Three-dimensional ultrasound subwavelength arbitrary focusing with broadband sparse metalens. <i>Science China: Physics, Mechanics and Astronomy</i> , 2022 , 65, 1	3.6	1
410	Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals <i>Nano Letters</i> , 2022 ,	11.5	6
409	Single-layer spatial analog meta-processor for imaging processing <i>Nature Communications</i> , 2022 , 13, 2188	17.4	8
408	Real-time Self-adaptive Thermal Metasurface Advanced Materials, 2022, e2201093	24	2
407	A metasurface-based light-to-microwave transmitter for hybrid wireless communications <i>Light: Science and Applications</i> , 2022 , 11, 126	16.7	9
406	Heat transfer control using a thermal analogue of coherent perfect absorption <i>Nature Communications</i> , 2022 , 13, 2683	17.4	2
405	Breaking the symmetry of polarizers. <i>Journal of Semiconductors</i> , 2022 , 43, 050401	2.3	
404	Robustly printable freeform thermal metamaterials. <i>Nature Communications</i> , 2021 , 12, 7228	17.4	8
403	Evolution and Nonreciprocity of Loss-Induced Topological Phase Singularity Pairs <i>Physical Review Letters</i> , 2021 , 127, 266101	7.4	6
402	Dynamics of Topological Polarization Singularity in Momentum Space. <i>Physical Review Letters</i> , 2021 , 127, 176101	7.4	1

(2021-2021)

401	Coexistence of Photoelectric Conversion and Storage in van der Waals Heterojunctions. <i>Physical Review Letters</i> , 2021 , 127, 217401	7.4	1
400	Generation of Optical Vortex Beams 2021 , 223-244		
399	Reconfiguring Colors of Single Relief Structures by Directional Stretching. <i>Advanced Materials</i> , 2021 , e2108128	24	7
398	Multidimensional phase singularities in nanophotonics. <i>Science</i> , 2021 , 374, eabj0039	33.3	23
397	Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. <i>Nano Letters</i> , 2021 , 21, 8979-8986	11.5	12
396	Artificial intelligence: A powerful paradigm for scientific research. <i>Innovation(China)</i> , 2021 , 2, 100179	17.8	21
395	Point-Source Geometric Metasurface Holography. <i>Nano Letters</i> , 2021 , 21, 2332-2338	11.5	18
394	Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	27
393	Transforming heat transfer with thermal metamaterials and devices. <i>Nature Reviews Materials</i> , 2021 , 6, 488-507	73.3	68
392	Spin-Encoded Wavelength-Direction Multitasking Janus Metasurfaces. <i>Advanced Optical Materials</i> , 2021 , 9, 2100190	8.1	28
391	From Lingering to Rift: Metasurface Decoupling for Near- and Far-Field Functionalization. <i>Advanced Materials</i> , 2021 , 33, e2007507	24	33
390	Hybridized Hyperbolic Surface Phonon Polaritons at ⊞MoO and Polar Dielectric Interfaces. <i>Nano Letters</i> , 2021 , 21, 3112-3119	11.5	29
389	Reply to: Reconsidering metasurface lasers. <i>Nature Photonics</i> , 2021 , 15, 339-340	33.9	О
388	Smart Doppler Cloak Operating in Broad Band and Full Polarizations. <i>Advanced Materials</i> , 2021 , 33, e20	0 <u>7.</u> 966	16
387	Polarization-insensitive 3D conformal-skin metasurface cloak. <i>Light: Science and Applications</i> , 2021 , 10, 75	16.7	39
386	Floating solid-state thin films with dynamic structural colour. <i>Nature Nanotechnology</i> , 2021 , 16, 795-801	28.7	22
385	Twistronics for photons: opinion. <i>Optical Materials Express</i> , 2021 , 11, 1377	2.6	14
384	Thermal camouflaging metamaterials. <i>Materials Today</i> , 2021 , 45, 120-141	21.8	48

383	Phase and Polarization Modulations Using Radiation-Type Metasurfaces. <i>Advanced Optical Materials</i> , 2021 , 9, 2100159	8.1	6
382	Mid-infrared semimetal polarization detectors with configurable polarity transition. <i>Nature Photonics</i> , 2021 , 15, 614-621	33.9	22
381	Efficient and Tunable Reflection of Phonon Polaritons at Built-In Intercalation Interfaces. <i>Advanced Materials</i> , 2021 , 33, e2008070	24	6
380	Arbitrary cylindrical vector beam generation enabled by polarization-selective Gouy phase shifter. <i>Photonics Research</i> , 2021 , 9, 1048	6	9
379	Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. <i>Nature Communications</i> , 2021 , 12, 2974	17.4	25
378	Optical Fireworks Based on Multifocal Three-Dimensional Color Prints. ACS Nano, 2021 , 15, 10185-1019	93 16.7	7
377	Enhanced light-matter interactions at photonic magic-angle topological transitions. <i>Applied Physics Letters</i> , 2021 , 118, 211101	3.4	14
376	Tailoring Light with Layered and Moir[Metasurfaces. <i>Trends in Chemistry</i> , 2021 , 3, 342-358	14.8	29
375	Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. <i>Science Advances</i> , 2021 , 7,	14.3	28
374	Quo Vadis, Metasurfaces?. <i>Nano Letters</i> , 2021 , 21, 5461-5474	11.5	34
373	Metasurfaces for bioelectronics and healthcare. <i>Nature Electronics</i> , 2021 , 4, 382-391	28.4	19
372	High-resolution light field prints by nanoscale 3D printing. <i>Nature Communications</i> , 2021 , 12, 3728	17.4	8
371	Nonlinearity-induced nanoparticle circumgyration at sub-diffraction scale. <i>Nature Communications</i> , 2021 , 12, 3722	17.4	5
370	Nanophotonic Structural Colors. <i>ACS Photonics</i> , 2021 , 8, 18-33	6.3	80
369	Engineered disorder in photonics. <i>Nature Reviews Materials</i> , 2021 , 6, 226-243	73.3	41
368	Path-Dependent Thermal Metadevice beyond Janus Functionalities. <i>Advanced Materials</i> , 2021 , 33, e200	3084	6
367	What limits limits?. <i>National Science Review</i> , 2021 , 8, nwaa210	10.8	2
366	NON-HERMITIAN ELECTROMAGNETIC METASURFACES AT EXCEPTIONAL POINTS (INVITED REVIEW). <i>Progress in Electromagnetics Research</i> , 2021 , 171, 1-20	3.8	11

365	Diffusive nonreciprocity and thermal diode. <i>Physical Review B</i> , 2021 , 103,	3.3	12
364	Optical Bound States in Continuum in MoS-Based Metasurface for Directional Light Emission. <i>Nano Letters</i> , 2021 , 21, 967-972	11.5	15
363	Many-particle induced band renormalization processes in few- and mono-layer MoS. <i>Nanotechnology</i> , 2021 , 32, 135208	3.4	6
362	Near-Omnidirectional Broadband Metamaterial Absorber for TM-Polarized Wave Based on Radiation Pattern Synthesis. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 1-1	4.9	4
361	Wireless Magnetic Actuation with a Bistable Parity-Time-Symmetric Circuit. <i>Physical Review Applied</i> , 2021 , 15,	4.3	2
360	Metaoptronic Multiplexed Interface for Probing Bioentity Behaviors. <i>Nano Letters</i> , 2021 , 21, 2681-2689	11.5	3
359	Infrared metasurface-enabled compact polarization nanodevices. <i>Materials Today</i> , 2021 , 50, 499-499	21.8	7
358	Observation of Anisotropic Magnetoresistance in Layered Nonmagnetic Semiconducting PdSe. <i>ACS Applied Materials & Discourse Magnetores</i> , 2021 , 13, 37527-37534	9.5	2
357	Configurable Phase Transitions in a Topological Thermal Material. <i>Physical Review Letters</i> , 2021 , 127, 105901	7.4	7
356	Ghost hyperbolic surface polaritons in bulk anisotropic crystals. <i>Nature</i> , 2021 , 596, 362-366	50.4	22
355	A phase-to-intensity strategy of angular velocity measurement based on photonic orbital angular momentum. <i>Nanophotonics</i> , 2021 ,	6.3	1
354	Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. ELight, 2021, 1,		33
353	Interface nano-optics with van der Waals polaritons. <i>Nature</i> , 2021 , 597, 187-195	50.4	28
352	Ephase modulated monolayer supercritical lens. <i>Nature Communications</i> , 2021 , 12, 32	17.4	11
351	. IEEE Transactions on Antennas and Propagation, 2021 , 69, 229-238	4.9	21
350	Meta-optics achieves RGB-achromatic focusing for virtual reality. <i>Science Advances</i> , 2021 , 7,	14.3	42
349	Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum. <i>ACS Nano</i> , 2021 , 15, 2893-2900	16.7	24
348	Regulated Photon Transport in Chaotic Microcavities by Tailoring Phase Space <i>Physical Review Letters</i> , 2021 , 127, 273902	7.4	1

347	Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. <i>Nature Communications</i> , 2020 , 11, 6404	17.4	37
346	Loss-Assisted Metasurface at an Exceptional Point. <i>ACS Photonics</i> , 2020 , 7, 3321-3327	6.3	8
345	Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 2020, 11, 6086	17.4	32
344	Millikelvin-resolved ambient thermography. Science Advances, 2020, 6,	14.3	13
343	Reprogrammable meta-hologram for optical encryption. <i>Nature Communications</i> , 2020 , 11, 5484	17.4	60
342	Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. <i>Nano Letters</i> , 2020 , 20, 4645-4	6 52 5	7
341	Photonic Nanojet Mediated Backaction of Dielectric Microparticles. ACS Photonics, 2020, 7, 1483-1490	6.3	13
340	Optofluidic Microengine in A Dynamic Flow Environment via Self-Induced Back-Action. <i>ACS Photonics</i> , 2020 , 7, 1500-1507	6.3	8
339	3D-Printed Curved Metasurface with Multifunctional Wavefronts. <i>Advanced Optical Materials</i> , 2020 , 8, 2000129	8.1	11
338	Steering valley-polarized emission of monolayer MoS sandwiched in plasmonic antennas. <i>Science Advances</i> , 2020 , 6, eaao0019	14.3	25
337	Exchange Bias in van der Waals CrCl/FeGeTe Heterostructures. <i>Nano Letters</i> , 2020 , 20, 5030-5035	11.5	26
336	Topological polaritons and photonic magic angles in twisted \(\text{HOO}\) bilayers. <i>Nature</i> , 2020 , 582, 209-213	50.4	174
335	Large enhancement of thermoelectric performance in MoS/-BN heterostructure due to vacancy-induced band hybridization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 13929-13936	11.5	14
334	Malus-metasurface-assisted polarization multiplexing. <i>Light: Science and Applications</i> , 2020 , 9, 101	16.7	86
333	Optical Potential-Well Array for High-Selectivity, Massive Trapping and Sorting at Nanoscale. <i>Nano Letters</i> , 2020 , 20, 5193-5200	11.5	24
332	Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. <i>Science Advances</i> , 2020 , 6, eaba3367	14.3	56
331	Artificial Metaphotonics Born Naturally in Two Dimensions. <i>Chemical Reviews</i> , 2020 , 120, 6197-6246	68.1	42
330	Robust Optical-Levitation-Based Metrology of Nanoparticle's Position and Mass. <i>Physical Review Letters</i> , 2020 , 124, 223603	7.4	17

(2020-2020)

329	Ghost spintronic THz-emitter-array microscope. <i>Light: Science and Applications</i> , 2020 , 9, 99	16.7	31
328	An optically driven digital metasurface for programming electromagnetic functions. <i>Nature Electronics</i> , 2020 , 3, 165-171	28.4	108
327	Fano Resonance in Artificial Photonic Molecules. Advanced Optical Materials, 2020, 8, 1902153	8.1	14
326	Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS. ACS Nano, 2020, 14, 4636-4645	16.7	32
325	Monolayer Conveyor for Stably Trapping and Transporting Sub-1'nm Particles. <i>Laser and Photonics Reviews</i> , 2020 , 14, 2000030	8.3	9
324	Reconfigurable symmetry-broken laser in a symmetric microcavity. <i>Nature Communications</i> , 2020 , 11, 1136	17.4	14
323	. IEEE Transactions on Antennas and Propagation, 2020 , 68, 1332-1347	4.9	44
322	HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H homoeostasis. <i>Plant Biotechnology Journal</i> , 2020 , 18, 1683-1696	11.6	27
321	Kerker-Type Intensity-Gradient Force of Light. Laser and Photonics Reviews, 2020, 14, 1900265	8.3	13
320	Momentum-Topology-Induced Optical Pulling Force. <i>Physical Review Letters</i> , 2020 , 124, 143901	7.4	13
319	Single-Layer Aberration-Compensated Flat Lens for Robust Wide-Angle Imaging. <i>Laser and Photonics Reviews</i> , 2020 , 14, 2000017	8.3	12
318	High-purity orbital angular momentum states from a visible metasurface laser. <i>Nature Photonics</i> , 2020 , 14, 498-503	33.9	114
317	Moir[Hyperbolic Metasurfaces. <i>Nano Letters</i> , 2020 , 20, 3217-3224	11.5	75
316	Purity and efficiency of hybrid orbital angular momentum-generating metasurfaces. <i>Journal of Nanophotonics</i> , 2020 , 14, 1	1.1	7
315	Metasurface holographic image projection based on mathematical properties of Fourier transform. <i>PhotoniX</i> , 2020 , 1,	19	72
314	Optical pulling forces and their applications. Advances in Optics and Photonics, 2020, 12, 288	16.7	47
313	Effective medium theory for thermal scattering off rotating structures. <i>Optics Express</i> , 2020 , 28, 25894	-25 9 07	17
312	On-chip trans-dimensional plasmonic router. <i>Nanophotonics</i> , 2020 , 9, 3357-3365	6.3	9

311	. URSI Radio Science Bulletin, 2020 , 2020, 54-62	0.1	
310	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. <i>Research</i> , 2020 , 2020, 9085782	7.8	25
309	Editorial on special issue Metamaterials and Plasmonics in Asia (Nanophotonics, 2020, 9, 3045-3047)	6.3	
308	Phonon Polaritons and Hyperbolic Response in van der Waals Materials. <i>Advanced Optical Materials</i> , 2020 , 8, 1901393	8.1	49
307	Transmission R eflection-Selective Metasurface and Its Application to RCS Reduction of High-Gain Reflector Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 1426-1435	4.9	16
306	Trichromatic and Tripolarization-Channel Holography with Noninterleaved Dielectric Metasurface. <i>Nano Letters</i> , 2020 , 20, 994-1002	11.5	92
305	A Single Noninterleaved Metasurface for High-Capacity and Flexible Mode Multiplexing of Higher-Order Poincar Sphere Beams. <i>Advanced Materials</i> , 2020 , 32, e1903983	24	32
304	A Minimalist Single-Layer Metasurface for Arbitrary and Full Control of Vector Vortex Beams. <i>Advanced Materials</i> , 2020 , 32, e1905659	24	111
303	Patterned resist on flat silver achieving saturated plasmonic colors with sub-20-nm spectral linewidth. <i>Materials Today</i> , 2020 , 35, 99-105	21.8	13
302	Directional Janus Metasurface. <i>Advanced Materials</i> , 2020 , 32, e1906352	24	111
301	Extraordinary Multipole Modes and Ultra-Enhanced Optical Lateral Force by Chirality. <i>Physical Review Letters</i> , 2020 , 125, 043901	7.4	15
300	Enhancing the modal purity of orbital angular momentum photons. APL Photonics, 2020, 5, 070802	5.2	22
299	A Fully Phase-Modulated Metasurface as An Energy-Controllable Circular Polarization Router. <i>Advanced Science</i> , 2020 , 7, 2001437	13.6	103
298	Integrated Molar Chiral Sensing Based on High- Metasurface. <i>Nano Letters</i> , 2020 , 20, 8696-8703	11.5	26
297	Cascade domino lithography for extreme photon squeezing. <i>Materials Today</i> , 2020 , 39, 89-97	21.8	18
296	Tunable analog thermal material. <i>Nature Communications</i> , 2020 , 11, 6028	17.4	22
295	Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. <i>Light: Science and Applications</i> , 2020 , 9, 137	16.7	30
294	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663	17.4	35

(2019-2020)

293	A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal-Insulator Transition. <i>Advanced Materials</i> , 2020 , 32, e1907071	24	27
292	Observation of nonreciprocal magnetophonon effect in nonencapsulated few-layered Crl. <i>Science Advances</i> , 2020 , 6,	14.3	16
291	Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. <i>Physical Review Letters</i> , 2020 , 125, 187403	7.4	11
290	Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. <i>Light: Science and Applications</i> , 2020 , 9, 139	16.7	85
289	Breaking Anti-PT Symmetry by Spinning a Resonator. <i>Nano Letters</i> , 2020 , 20, 7594-7599	11.5	43
288	A Continuously Tunable Solid-Like Convective Thermal Metadevice on the Reciprocal Line. <i>Advanced Materials</i> , 2020 , 32, e2003823	24	18
287	Deuterogenic Plasmonic Vortices. <i>Nano Letters</i> , 2020 , 20, 6774-6779	11.5	19
286	Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-optics. <i>Nano Letters</i> , 2020 , 20, 7811-7818	11.5	17
285	Structured Semiconductor Interfaces: Active Functionality on Light Manipulation. <i>Proceedings of the IEEE</i> , 2020 , 108, 772-794	14.3	14
284	Chiral plasmonics and enhanced chiral light-matter interactions. <i>Science China: Physics, Mechanics and Astronomy</i> , 2020 , 63, 1	3.6	5
283	Polarization-Controlled Dual-Programmable Metasurfaces. <i>Advanced Science</i> , 2020 , 7, 1903382	13.6	50
282	Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. <i>Light: Science and Applications</i> , 2020 , 9, 62	16.7	54
281	3D Printed Meta-Helmet for Wide-Angle Thermal Camouflages. <i>Advanced Functional Materials</i> , 2020 , 30, 2002061	15.6	19
280	Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. <i>Light: Science and Applications</i> , 2019 , 8, 95	16.7	95
279	Structural color three-dimensional printing by shrinking photonic crystals. <i>Nature Communications</i> , 2019 , 10, 4340	17.4	93
278	Nanophotonic Array-Induced Dynamic Behavior for Label-Free Shape-Selective Bacteria Sieving. <i>ACS Nano</i> , 2019 , 13, 12070-12080	16.7	29
277	One-step green conversion of benzyl bromide to aldehydes on NaOH-modified g-C3N4 with dioxygen under LED visible light. <i>Catalysis Science and Technology</i> , 2019 , 9, 3270-3278	5.5	9
276	Electromagnetic metasurfaces: from concept to applications. <i>Science Bulletin</i> , 2019 , 64, 791-792	10.6	6

275	Field-programmable silicon temporal cloak. <i>Nature Communications</i> , 2019 , 10, 2726	17.4	5
274	Foliar application of betaine improves water-deficit stress tolerance in barley (Hordeum vulgare L.). <i>Plant Growth Regulation</i> , 2019 , 89, 109-118	3.2	9
273	Spectrum Manipulation for Sound with Effective Gauge Fields in Cascading Temporally Modulated Waveguides. <i>Physical Review Applied</i> , 2019 , 11,	4.3	3
272	Superoscillation: from physics to optical applications. <i>Light: Science and Applications</i> , 2019 , 8, 56	16.7	45
271	Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. <i>Nature Communications</i> , 2019 , 10, 2085	17.4	55
270	Roadmap on superoscillations. <i>Journal of Optics (United Kingdom)</i> , 2019 , 21, 053002	1.7	59
269	Encrypted Thermal Printing with Regionalization Transformation. Advanced Materials, 2019, 31, e18078	4294	70
268	Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. <i>Nano Letters</i> , 2019 , 19, 3830-3837	11.5	24
267	Off-Axis Holography with Uniform Illumination via 3D Printed Diffractive Optical Elements. <i>Advanced Optical Materials</i> , 2019 , 7, 1900068	8.1	19
266	Quantum plasmonics get applied. <i>Progress in Quantum Electronics</i> , 2019 , 65, 1-20	9.1	50
265	Machine-learning reprogrammable metasurface imager. <i>Nature Communications</i> , 2019 , 10, 1082	17.4	194
264	Nanoscale Lamb wave-driven motors in nonliquid environments. <i>Science Advances</i> , 2019 , 5, eaau8271	14.3	18
263	Versatile total angular momentum generation using cascaded J-plates. <i>Optics Express</i> , 2019 , 27, 7469-76	4 84	24
262	Doublet Thermal Metadevice. <i>Physical Review Applied</i> , 2019 , 11,	4.3	40
261	Coherent steering of nonlinear chiral valley photons with a synthetic AuWS2 metasurface. <i>Nature Photonics</i> , 2019 , 13, 467-472	33.9	135
2 60	Tunable Metasurfaces: Kerker-Conditioned Dynamic Cryptographic Nanoprints (Advanced Optical Materials 4/2019). <i>Advanced Optical Materials</i> , 2019 , 7, 1970016	8.1	42
259	Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	7
258	Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. <i>Nature Electronics</i> , 2019 , 2, 335-342	28.4	59

257	Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. <i>Nature Communications</i> , 2019 , 10, 3411	17.4	37
256	Intelligent metasurface imager and recognizer. <i>Light: Science and Applications</i> , 2019 , 8, 97	16.7	119
255	Dielectric multi-momentum meta-transformer in the visible. <i>Nature Communications</i> , 2019 , 10, 4789	17.4	50
254	Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 22959-22965	11.5	47
253	Chirality-assisted three-dimensional acoustic Floquet lattices. <i>Physical Review Research</i> , 2019 , 1,	3.9	16
252	Photonic tractor beams: a review. <i>Advanced Photonics</i> , 2019 , 1, 1	8.1	35
251	Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking. <i>Advanced Photonics</i> , 2019 , 1, 1	8.1	5
250	Anti-parity-time symmetry in diffusive systems. <i>Science</i> , 2019 , 364, 170-173	33.3	116
249	Dynamically tunable infrared grating based on graphene-enabled phase switching of a split ring resonator [Invited]. <i>Optical Materials Express</i> , 2019 , 9, 56	2.6	4
248	Nearly lattice-matched molybdenum disulfide/gallium nitride heterostructure enabling high-performance phototransistors. <i>Photonics Research</i> , 2019 , 7, 311	6	19
247	High-Order Exceptional Points in Diffusive Systems: Robust APT Symmetry 2 Against Perturbation and Phase Oscillation at APT Symmetry Breaking. <i>ES Energy & Environments</i> , 2019 ,	2.9	11
246	Zero chiral bulk modes in 3D Weyl metamaterials. <i>Science Bulletin</i> , 2019 , 64, 799-801	10.6	1
245	Twisted Surface Plasmons with Spin-Controlled Gold Surfaces. Advanced Optical Materials, 2019 , 7, 180°	1 0 £0	25
244	Perturbative countersurveillance metaoptics with compound nanosieves. <i>Light: Science and Applications</i> , 2019 , 8, 101	16.7	23
243	Plasmonic nanoparticle-film-assisted photoelectrochemical catalysis across the entire visible-NIR region. <i>Nanoscale</i> , 2019 , 11, 23058-23064	7.7	7
242	Rotation-Selective Moir[Magnification of Structural Color Pattern Arrays. ACS Nano, 2019, 13, 14138-14	14617	15
241	Ultrasensitive Transmissive Infrared Spectroscopy via Loss Engineering of Metallic Nanoantennas for Compact Devices. <i>ACS Applied Materials & Engineering</i> , 11, 47270-47278	9.5	20
	Manipulation of Orbital-Angular-Momentum Spectrum Using Pinhole Plates. Physical Review		

239	Upconversion superburst with sub-2 ⅓ lifetime. <i>Nature Nanotechnology</i> , 2019 , 14, 1110-1115	28.7	69
238	Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride. <i>Nano Letters</i> , 2019 , 19, 1009-101	4 11.5	42
237	Broadband Generation of Photonic Spin-Controlled Arbitrary Accelerating Light Beams in the Visible. <i>Nano Letters</i> , 2019 , 19, 1158-1165	11.5	69
236	Symmetry-breaking-induced nonlinear optics at a microcavity surface. <i>Nature Photonics</i> , 2019 , 13, 21-24	¹ 33.9	100
235	Focus on 2D material nanophotonics. <i>Nanotechnology</i> , 2019 , 30, 030201	3.4	2
234	Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm. <i>ACS Nano</i> , 2019 , 13, 821-829	16.7	24
233	Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. <i>Light: Science and Applications</i> , 2019 , 8, 3	16.7	103
232	Compact Aberration-Corrected Spectrometers in the Visible Using Dispersion-Tailored Metasurfaces. <i>Advanced Optical Materials</i> , 2019 , 7, 1801144	8.1	27
231	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. <i>ACS Photonics</i> , 2019 , 6, 211-220	6.3	81
230	Thermal meta-device in analogue of zero-index photonics. <i>Nature Materials</i> , 2019 , 18, 48-54	27	112
229	Plasmonic-Assisted Graphene Oxide Artificial Muscles. <i>Advanced Materials</i> , 2019 , 31, e1806386	24	85
228			
	Single-Layer Metasurface with Controllable Multiwavelength Functions. <i>Nano Letters</i> , 2018 , 18, 2420-26	427 .5	119
227	Single-Layer Metasurface with Controllable Multiwavelength Functions. <i>Nano Letters</i> , 2018 , 18, 2420-24. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. <i>Light: Science and Applications</i> , 2018 , 7, 17158	427 .5	119
	Giant intrinsic chiro-optical activity in planar dielectric nanostructures. <i>Light: Science and</i>		
227	Giant intrinsic chiro-optical activity in planar dielectric nanostructures. <i>Light: Science and Applications</i> , 2018 , 7, 17158 Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency	16.7	141
227	Giant intrinsic chiro-optical activity in planar dielectric nanostructures. <i>Light: Science and Applications</i> , 2018 , 7, 17158 Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. <i>Nature Communications</i> , 2018 , 9, 815 Investigating the dynamics of excitons in monolayer WSe before and after organic super acid	16.7 17.4	141 8 ₅
227 226 225	Giant intrinsic chiro-optical activity in planar dielectric nanostructures. <i>Light: Science and Applications</i> , 2018 , 7, 17158 Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. <i>Nature Communications</i> , 2018 , 9, 815 Investigating the dynamics of excitons in monolayer WSe before and after organic super acid treatment. <i>Nanoscale</i> , 2018 , 10, 9346-9352	16.7 17.4 7.7	141 8 ₅ 7

221	Structured thermal surface for radiative camouflage. <i>Nature Communications</i> , 2018 , 9, 273	17.4	134
220	Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. <i>ACS Nano</i> , 2018 , 12, 1859-1867	16.7	58
219	Nanometer-precision linear sorting with synchronized optofluidic dual barriers. <i>Science Advances</i> , 2018 , 4, eaao0773	14.3	114
218	Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications. <i>Advanced Materials</i> , 2018 , 30, e1704556	24	67
217	Wavenumber-Splitting Metasurfaces Achieve Multichannel Diffusive Invisibility. <i>Advanced Optical Materials</i> , 2018 , 6, 1800010	8.1	55
216	Self-Induced Backaction Optical Pulling Force. <i>Physical Review Letters</i> , 2018 , 120, 123901	7.4	35
215	Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. <i>Light: Science and Applications</i> , 2018 , 7, 17156	16.7	64
214	Dynamic Janus Metasurfaces in the Visible Spectral Region. <i>Nano Letters</i> , 2018 , 18, 4584-4589	11.5	83
213	Nano-optic endoscope for high-resolution optical coherence tomography. <i>Nature Photonics</i> , 2018 , 12, 540-547	33.9	145
212	Light-Controllable Digital Coding Metasurfaces. <i>Advanced Science</i> , 2018 , 5, 1801028	13.6	87
211	Light-programmable manipulation of DC field in Laplacian Meta-devices. Scientific Reports, 2018, 8, 1220	0.8 .9	4
210	Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. <i>Optics Express</i> , 2018 , 26, 22916-22925	3.3	25
209	3D Metaphotonic Nanostructures with Intrinsic Chirality. <i>Advanced Functional Materials</i> , 2018 , 28, 18031	1 43 .6	73
208	Lead Halide Perovskite Nanostructures for Dynamic Color Display. ACS Nano, 2018, 12, 8847-8854	16.7	99
207	Arbitrary and Independent Polarization Control In Situ via a Single Metasurface. <i>Advanced Optical Materials</i> , 2018 , 6, 1800728	8.1	36
206	0.2 Thick Adaptive Retroreflector Made of Spin-Locked Metasurface. <i>Advanced Materials</i> , 2018 , 30, e1802721	24	47
205	Full Modeling, Loss Reduction, and Mutual Coupling Control of Spoof Surface Plasmon-Based Meander Slow Wave Transmission Lines. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2018 , 66, 3764-3772	4.1	25
204	Wavefront manipulation by acoustic metasurfaces: from physics and applications. <i>Nanophotonics</i> , 2018 , 7, 1191-1205	6.3	24

203	Efficient and Tunable Photoinduced Honeycomb Lattice in an Atomic Ensemble. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1800050	8.3	14
202	Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints. <i>Research</i> , 2018 , 2018, 81090	5 ∮ .8	44
201	Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging. <i>Optics Letters</i> , 2018 , 43, 5615-5618	3	5
200	Digital Metasurfaces: Light-Controllable Digital Coding Metasurfaces (Adv. Sci. 11/2018). <i>Advanced Science</i> , 2018 , 5, 1870068	13.6	3
199	Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials. <i>Applied Physics Letters</i> , 2018 , 113, 201103	3.4	17
198	Broadband Achromatic Metasurface-Refractive Optics. <i>Nano Letters</i> , 2018 , 18, 7801-7808	11.5	79
197	Kerker-Conditioned Dynamic Cryptographic Nanoprints. Advanced Optical Materials, 2018, 7, 1801070	8.1	35
196	Noninterleaved Metasurface for (2-1) Spin- and Wavelength-Encoded Holograms. <i>Nano Letters</i> , 2018 , 18, 8016-8024	11.5	125
195	Chirality-Assisted High-Efficiency Metasurfaces with Independent Control of Phase, Amplitude, and Polarization. <i>Advanced Optical Materials</i> , 2018 , 7, 1801479	8.1	87
194	Localized Self-Growth of Reconfigurable Architectures Induced by a Femtosecond Laser on a Shape-Memory Polymer. <i>Advanced Materials</i> , 2018 , 30, e1803072	24	41
193	Living Nanospear for Near-Field Optical Probing. ACS Nano, 2018, 12, 10703-10711	16.7	35
192	Robust Control of a Multifrequency Metamaterial Cloak Featuring Intrinsic Harmonic Selection. <i>Physical Review Applied</i> , 2018 , 10,	4.3	12
191	Full-Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry. <i>Advanced Materials</i> , 2018 , 30, e1804019	24	61
190	Full-space Cloud of Random Points with a Scrambling Metasurface. <i>Light: Science and Applications</i> , 2018 , 7, 63	16.7	76
189	Laser-Splashed Three-Dimensional Plasmonic Nanovolcanoes for Steganography in Angular Anisotropy. <i>ACS Nano</i> , 2018 , 12, 9233-9239	16.7	54
188	A reprogrammable multifunctional chalcogenide guided-wave lens. <i>Nanoscale</i> , 2018 , 10, 17053-17059	7.7	3
187	Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. <i>Light: Science and Applications</i> , 2018 , 7, 18003	16.7	50
186	Photonics and Optoelectronics of 2D Metal-Halide Perovskites. <i>Small</i> , 2018 , 14, e1800682	11	128

(2017-2017)

185	Slow cooling and efficient extraction of C-exciton hot carriers in MoS monolayer. <i>Nature Communications</i> , 2017 , 8, 13906	17.4	95
184	A Reconfigurable Active Huygens' Metalens. <i>Advanced Materials</i> , 2017 , 29, 1606422	24	301
183	Thermal Conductance of the 2D MoS/h-BN and graphene/h-BN Interfaces. <i>Scientific Reports</i> , 2017 , 7, 43886	4.9	64
182	Effects of edge on graphene plasmons as revealed by infrared nanoimaging. <i>Light: Science and Applications</i> , 2017 , 6, e16204	16.7	56
181	Highly radiative symmetric plasmonic leaky wave antenna 2017,		2
180	Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy. <i>Nanotechnology</i> , 2017 , 28, 264001	3.4	16
179	Chip-Scale Plasmonic Sum Frequency Generation. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-8	1.8	3
178	All-Optical Chirality-Sensitive Sorting via Reversible Lateral Forces in Interference Fields. <i>ACS Nano</i> , 2017 , 11, 4292-4300	16.7	69
177	Recent advances in the spin Hall effect of light. Reports on Progress in Physics, 2017, 80, 066401	14.4	231
176	A Single-Layered Spoof-Plasmon-Mode Leaky Wave Antenna With Consistent Gain. <i>IEEE Transactions on Antennas and Propagation</i> , 2017 , 65, 681-687	4.9	93
175	A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance. <i>Advanced Materials</i> , 2017 , 29, 1602721	24	96
174	Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. <i>Light: Science and Applications</i> , 2017 , 6, e17039	16.7	285
173	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene-Black Phosphorus Heterostructure. <i>ACS Applied Materials & District Materials</i> (1997) 100 - 100	9.5	138
172	Three-dimensional supercritical resolved light-induced magnetic holography. <i>Science Advances</i> , 2017 , 3, e1701398	14.3	36
171	Infrared Nanoimaging Reveals the Surface Metallic Plasmons in Topological Insulator. <i>ACS Photonics</i> , 2017 , 4, 3055-3062	6.3	15
170	Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light. <i>ACS Nano</i> , 2017 , 11, 9382-9389	16.7	122
169	Intrinsically shaping the focal behavior with multi-ring Bessel-Gaussian beam. <i>Applied Physics Letters</i> , 2017 , 111, 031103	3.4	7
168	Pulling cylindrical particles using a soft-nonparaxial tractor beam. <i>Scientific Reports</i> , 2017 , 7, 652	4.9	9

167	Electromagnetic reprogrammable coding-metasurface holograms. <i>Nature Communications</i> , 2017 , 8, 197	7 17.4	480
166	Vortex generation reaches a new plateau. <i>Science</i> , 2017 , 357, 645	33.3	38
165	Optically induced atomic lattice with tunable near-field and far-field diffraction patterns. <i>Photonics Research</i> , 2017 , 5, 676	6	20
164	Conjugate gradient method for phase retrieval based on the Wirtinger derivative. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2017 , 34, 708-712	1.8	9
163	Ultrathin Metalens and Three-Dimensional Optical Holography Using Metasurfaces 2017 , 91-126		
162	Low-Loss Spoof Surface Plasmon Slow-Wave Transmission Lines With Compact Transition and High Isolation. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2016 , 64, 3078-3086	4.1	102
161	Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension. <i>ACS Photonics</i> , 2016 , 3, 1986-1992	6.3	34
160	Controlling Lateral Fano Interference Optical Force with Autle2Sb2Te5 Hybrid Nanostructure. <i>ACS Photonics</i> , 2016 , 3, 1934-1942	6.3	28
159	Cloaking the magnons. <i>Physical Review B</i> , 2016 , 93,	3.3	3
158	Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. <i>Nature Communications</i> , 2016 , 7, 11283	17.4	201
157	Spin and wavelength multiplexed nonlinear metasurface holography. <i>Nature Communications</i> , 2016 , 7, 11930	17.4	290
156	2016,		5
155	Advances in Full Control of Electromagnetic Waves with Metasurfaces. <i>Advanced Optical Materials</i> , 2016 , 4, 818-833	8.1	240
154	Silicon multi-meta-holograms for the broadband visible light. <i>Laser and Photonics Reviews</i> , 2016 , 10, 500	04599	143
153	Large-Area Graphene Nanodot Array for Plasmon-Enhanced Infrared Spectroscopy. Small, 2016 , 12, 130	02:-8	29
152	Flat Helical Nanosieves. Advanced Functional Materials, 2016 , 26, 5255-5262	15.6	48
151	Spoof Plasmon-Based Slow-Wave Excitation of Dielectric Resonator Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2016 , 64, 2094-2099	4.9	73
150	Fano resonant Ge2Sb2Te5 nanoparticles realize switchable lateral optical force. <i>Nanoscale</i> , 2016 , 8, 56	5 <i>7₇-:6</i> 6	21

(2015-2016)

149	Multiband Switchable Terahertz Quarter-Wave Plates via Phase-Change Metasurfaces. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-8	1.8	26
148	Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. <i>Science Advances</i> , 2016 , 2, e1501168	14.3	218
147	On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. <i>Nanoscale</i> , 2016 , 8, 2227-33	7.7	54
146	Actively Tunable Visible Surface Plasmons in Bi2 Te3 and their Energy-Harvesting Applications. <i>Advanced Materials</i> , 2016 , 28, 3138-44	24	53
145	Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. <i>Advanced Materials</i> , 2016 , 28, 2533-9	24	289
144	Broadband and stable acoustic vortex emitter with multi-arm coiling slits. <i>Applied Physics Letters</i> , 2016 , 108, 203501	3.4	75
143	Localized surface plasmon resonance in graphene nanomesh with Au nanostructures. <i>Applied Physics Letters</i> , 2016 , 109, 041106	3.4	9
142	Evanescent vortex: Optical subwavelength spanner. <i>Applied Physics Letters</i> , 2016 , 109, 191107	3.4	14
141	Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields. Journal of Optics (United Kingdom), 2016 , 18, 044003	1.7	36
140	Anomalous Shift Behaviors in the Photoluminescence of Dolmen-Like Plasmonic Nanostructures. <i>ACS Photonics</i> , 2016 , 3, 979-984	6.3	20
139	Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution. <i>ACS Photonics</i> , 2016 , 3, 1847-1853	6.3	19
138	Highly efficient plasmon excitation in graphene-Bi_2Te_3 heterostructure. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 1842	1.7	14
137	Shaping 3D Path of Electromagnetic Waves Using Gradient-Refractive-Index Metamaterials. <i>Advanced Science</i> , 2016 , 3, 1600022	13.6	17
136	Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation. <i>Science China: Physics, Mechanics and Astronomy</i> , 2015 , 58, 1	3.6	19
135	Acoustic cloaking by extraordinary sound transmission. <i>Journal of Applied Physics</i> , 2015 , 117, 214507	2.5	14
134	Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials. <i>Scientific Reports</i> , 2015 , 5, 10242	4.9	50
133	Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays. <i>Nanoscale</i> , 2015 , 7, 12018-22	7.7	26
132	Shaping a Subwavelength Needle with Ultra-long Focal Length by Focusing Azimuthally Polarized Light. <i>Scientific Reports</i> , 2015 , 5, 9977	4.9	124

131	Color generation via subwavelength plasmonic nanostructures. <i>Nanoscale</i> , 2015 , 7, 6409-19	7.7	214
130	Enabling low amounts of YAG:Ce(3+) to convert blue into white light with plasmonic Au nanoparticles. <i>Nanoscale</i> , 2015 , 7, 10350-6	7.7	24
129	Ultrahigh-capacity non-periodic photon sieves operating in visible light. <i>Nature Communications</i> , 2015 , 6, 7059	17.4	113
128	An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface. <i>Optics Express</i> , 2015 , 23, 11114-22	3.3	107
127	Analysis of mid-infrared lasing in active random media. <i>Optics Express</i> , 2015 , 23, 12286-92	3.3	4
126	Radiation pressure of active dispersive chiral slabs. <i>Optics Express</i> , 2015 , 23, 16546-53	3.3	29
125	Physical mechanisms for tuning the nonlinear effects in photonic crystals. <i>Optics Express</i> , 2015 , 23, 1988	8 5.9 0	7
124	Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams. Light: Science and Applications, 2015 , 4, e278-e278	16.7	63
123	Interplay of Optical Force and Ray-Optic Behavior between Luneburg Lenses. <i>ACS Photonics</i> , 2015 , 2, 1384-1390	6.3	11
122	Visible Surface Plasmon Modes in Single BillelNanoplate. <i>Nano Letters</i> , 2015 , 15, 8331-5	11.5	57
121	Unveiling the correlation between non-diffracting tractor beam and its singularity in Poynting vector. <i>Laser and Photonics Reviews</i> , 2015 , 9, 75-82	8.3	40
120	Design and modeling of low-loss symmetric slow-wave transmission lines 2015 ,		2
119	Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields. <i>Advanced Materials</i> , 2015 , 27, 7752-8	24	145
118	Longitudinal Multifoci Metalens for Circularly Polarized Light. <i>Advanced Optical Materials</i> , 2015 , 3, 1201	I- 82 06	140
117	Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width. <i>Laser and Photonics Reviews</i> , 2015 , 9, 674-681	8.3	15
116	Switchable self-defocusing and focusing in nearly isotropic photonic crystals via enhanced inverse diffraction. <i>Physical Review A</i> , 2015 , 91,	2.6	5
115	Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface. <i>Scientific Reports</i> , 2015 , 5, 15020	4.9	189
114	An Optically Controllable Transformation-dc Illusion Device. <i>Advanced Materials</i> , 2015 , 27, 4628-33	24	16

(2014-2015)

Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2015 , 63, 1817-1825	4.1	188
Guide-wave Photonic Pulling Force Using One-way Photonic Chiral Edge States 2015 ,		2
Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. <i>Advanced Materials</i> , 2015 , 27, 1195-200	24	341
Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. <i>Scientific Reports</i> , 2014 , 4, 5537	4.9	81
Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. <i>Advanced Materials</i> , 2014 , 26, 1731-4	24	262
Direct excitation of dark plasmonic resonances under visible light at normal incidence. <i>Nanoscale</i> , 2014 , 6, 2106-11	7.7	16
Experimental demonstration of a bilayer thermal cloak. <i>Physical Review Letters</i> , 2014 , 112, 054302	7.4	362
Three-dimensional plasmonic stereoscopic prints in full colour. <i>Nature Communications</i> , 2014 , 5, 5361	17.4	218
Twisted Focusing of Optical Vortices with Broadband Flat Spiral Zone Plates. <i>Advanced Optical Materials</i> , 2014 , 2, 1193-1198	8.1	40
Pulling extremely anisotropic lossy particles using light without intensity gradient. <i>Physical Review A</i> , 2014 , 90,	2.6	23
Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. <i>Nanoscale</i> , 2014 , 6, 12303-9	7.7	39
Engineering light-matter interaction for emerging optical manipulation applications. <i>Nanophotonics</i> , 2014 , 3, 181-201	6.3	32
Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers. <i>ACS Nano</i> , 2014 , 8, 9188-98	16.7	45
Tracing optical force fields within graded-index media. <i>New Journal of Physics</i> , 2014 , 16, 053035	2.9	14
Coupling effect of spiral-shaped terahertz metamaterials for tunable electromagnetic response. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 115, 25-29	2.6	15
Optimization-free superoscillatory lens using phase and amplitude masks. <i>Laser and Photonics Reviews</i> , 2014 , 8, 152-157	8.3	109
Plasmonic color palettes for photorealistic printing with aluminum nanostructures. <i>Nano Letters</i> , 2014 , 14, 4023-9	11.5	410
Manipulation of acoustic focusing with an active and configurable planar metasurface transducer. <i>Scientific Reports</i> , 2014 , 4, 6257	4.9	62
	Line. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1817-1825 Guide-wave Photonic Pulling Force Using One-way Photonic Chiral Edge States 2015, Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 2015, 27, 1195-200 Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. Scientific Reports, 2014, 4, 5537 Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Advanced Materials, 2014, 26, 1731-4 Direct excitation of dark plasmonic resonances under visible light at normal incidence. Nanoscale, 2014, 6, 2106-11 Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 2014, 112, 054302 Three-dimensional plasmonic stereoscopic prints in full colour. Nature Communications, 2014, 5, 5361 Twisted Focusing of Optical Vortices with Broadband Flat Spiral Zone Plates. Advanced Optical Materials, 2014, 2, 1193-1198 Pulling extremely anisotropic lossy particles using light without intensity gradient. Physical Review A, 2014, 90, Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale, 2014, 6, 12303-9 Engineering light-matter interaction for emerging optical manipulation applications. Nanophotonics, 2014, 3, 181-201 Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers. ACS Nano, 2014, 8, 9188-98 Tracing optical force fields within graded-index media. New Journal of Physics, 2014, 16, 053035 Coupling effect of spiral-shaped terahertz metamaterials for tunable electromagnetic response. Applied Physics A: Materials Science and Processing, 2014, 115, 25-29 Optimization-free superoscillatory lens using phase and amplitude masks. Laser and Photonics Reviews, 2014, 8, 152-157 Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Letters, 2014, 14,	Line. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1817-1825 Guide-wave Photonic Pulling Force Using One-way Photonic Chiral Edge States 2015, Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 2015, 27, 1195-200 Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. Scientific Reports, 2014, 4, 5537 Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Advanced Materials, 2014, 26, 1731-4 Direct excitation of dark plasmonic resonances under visible light at normal incidence. Nanoscale, 2014, 6, 2106-11 Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 2014, 112, 054302 74 Three-dimensional plasmonic stereoscopic prints in full colour. Nature Communications, 2014, 5, 5361 77 Twisted Focusing of Optical Vortices with Broadband Flat Spiral Zone Plates. Advanced Optical Materials, 2014, 2, 1193-1198 Pulling extremely anisotropic lossy particles using light without intensity gradient. Physical Review 2, 2014, 90. Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale, 2014, 6, 12303-9 Engineering light-matter interaction for emerging optical manipulation applications. Nanophotonics 2, 2014, 3, 181-201 Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers. ACS Nano, 2014, 8, 9188-98 Tracing optical force fields within graded-index media. New Journal of Physics, 2014, 16, 053035 29 Coupling effect of spiral-shaped terahertz metamaterials for tunable electromagnetic response. Applied Physics A: Materials Science and Processing, 2014, 115, 25-29 Optimization-free superoscillatory lens using phase and amplitude masks. Laser and Photonics 83 Manipulation of acoustic focusing with an active and configurable planar metasurface transducer.

95	GENERATION OF OPTICAL VORTEX BEAMS BY COMPACT STRUCTURES. <i>Journal of Molecular and Engineering Materials</i> , 2014 , 02, 1440013	1.3	9
94	Three-dimensional visible-light capsule enclosing perfect supersized darkness via antiresolution. <i>Laser and Photonics Reviews</i> , 2014 , 8, 743-749	8.3	15
93	Manipulating DC currents with bilayer bulk natural materials. Advanced Materials, 2014, 26, 3478-83	24	53
92	Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light. <i>Optics Letters</i> , 2014 , 39, 630-3	3	36
91	Linear momentum increase and negative optical forces at dielectric interface. <i>Nature Photonics</i> , 2013 , 7, 787-790	33.9	104
90	Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. <i>Energy and Environmental Science</i> , 2013 , 6, 3537	35.4	99
89	Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial RayleighBommerfeld method. <i>Laser Physics Letters</i> , 2013 , 10, 065004	1.5	44
88	Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. <i>Nanoscale</i> , 2013 , 5, 3373-9	7.7	35
87	Creation of Ghost Illusions Using Wave Dynamics in Metamaterials. <i>Advanced Functional Materials</i> , 2013 , 23, 4028-4034	15.6	89
86	Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source. <i>Physical Review A</i> , 2013 , 88,	2.6	12
85	Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission. <i>Physical Review B</i> , 2013 , 88,	3.3	39
84	Three-dimensional optical holography using a plasmonic metasurface. <i>Nature Communications</i> , 2013 , 4,	17.4	844
83	Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials. <i>Physical Review Letters</i> , 2013 , 111, 133901	7.4	31
82	FINITE-BOUNDARY BOWTIE APERTURE ANTENNA FOR TRAPPING NANOPARTICLES. <i>Progress in Electromagnetics Research</i> , 2013 , 136, 17-27	3.8	2
81	Electromagnetic Scattering by a Gyrotropic-Coated Conducting Sphere Illuminated From Arbitrary Spatial Angles. <i>IEEE Transactions on Antennas and Propagation</i> , 2013 , 61, 3381-3386	4.9	6
80	Reversible Three-Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens. <i>Advanced Optical Materials</i> , 2013 , 1, 517-521	8.1	53
79	Macroscopic broadband optical escalator with force-loaded transformation optics. <i>Optics Express</i> , 2013 , 21, 796-803	3.3	5
78	Phase-preserved optical elevator. <i>Optics Express</i> , 2013 , 21, 6650-7	3.3	4

(2011-2013)

77	Broadband all-dielectric magnifying lens for far-field high-resolution imaging. <i>Advanced Materials</i> , 2013 , 25, 6963-8	24	66
76	Homogeneous thermal cloak with constant conductivity and tunable heat localization. <i>Scientific Reports</i> , 2013 , 3, 1593	4.9	161
75	Micro-Doppler feature extraction for wideband imaging radar based on complex image orthogonal matching pursuit decomposition. <i>IET Radar, Sonar and Navigation</i> , 2013 , 7, 914-924	1.4	32
74	Redirection of sound waves using acoustic metasurface. <i>Applied Physics Letters</i> , 2013 , 103, 151604	3.4	111
73	Micro-motion feature extraction of target in inverse synthetic aperture radar imaging with sparse aperture. <i>Journal of Electromagnetic Waves and Applications</i> , 2013 , 27, 1841-1849	1.3	2
72	Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection. <i>Scientific Reports</i> , 2013 , 3, 2537	4.9	117
71	Miniaturized on-chip passive devices based on self-rolled-up SiNx nanomembrane inductive tube 2013 ,		2
70	Exploiting design freedom in biaxial dielectrics to enable spatially overlapping optical instruments. <i>Scientific Reports</i> , 2013 , 3, 2055	4.9	2
69	Rigorous Derivation and Fast Solution of Spatial-Domain Green's Functions for Uniaxial Anisotropic Multilayers Using Modified Fast Hankel Transform Method. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2012 , 60, 205-217	4.1	9
68	Graphene-based photonic crystal to steer giant Faraday rotation. <i>Applied Physics Letters</i> , 2012 , 100, 241	13046	43
67	Material-independent and size-independent tractor beams for dipole objects. <i>Physical Review Letters</i> , 2012 , 109, 023902	7.4	61
66	Dual-polarity plasmonic metalens for visible light. <i>Nature Communications</i> , 2012 , 3, 1198	17.4	745
65	Photorealistic rendering of a graded negative-index metamaterial magnifier. <i>New Journal of Physics</i> , 2012 , 14, 033024	2.9	11
64	Diameter-bandwidth product limitation of isolated-object cloaking. <i>Physical Review A</i> , 2012 , 86,	2.6	28
63	Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. <i>Optics Letters</i> , 2012 , 37, 4955-7	3	36
62	Ultrahigh-contrast-ratio silicon Fano diode. <i>Physical Review A</i> , 2012 , 85,	2.6	59
61	Single gradientless light beam drags particles as tractor beams. <i>Physical Review Letters</i> , 2011 , 107, 2036	5 9 14	209
60	Gain-assisted transformation optics. <i>Optics Express</i> , 2011 , 19, 8610-5	3.3	5

59	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. <i>Optics Express</i> , 2011 , 19, 13020-30	3.3	26
58	Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials. <i>Optics Letters</i> , 2011 , 36, 181-3	3	44
57	Focusing of Tandem Bistatic-Configuration Data With Range Migration Algorithm. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2011 , 8, 88-92	4.1	10
56	Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach. <i>IEEE Transactions on Antennas and Propagation</i> , 2011 , 59, 4364-4368	4.9	18
55	Fano resonance of three-dimensional spiral photonic crystals: Paradoxical transmission and polarization gap. <i>Applied Physics Letters</i> , 2011 , 98, 081116	3.4	10
54	Mie series for electromagnetic scattering of chiral metamaterials sphere. <i>Journal of Systems Engineering and Electronics</i> , 2011 , 22, 885-891	1.3	7
53	The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication. <i>Applied Physics Letters</i> , 2010 , 97, 124104	3.4	13
52	Micro-Doppler Effect Analysis and Feature Extraction in ISAR Imaging With Stepped-Frequency Chirp Signals. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2010 , 48, 2087-2098	8.1	80
51	Simulation of full responses of a triaxial induction tool in a homogeneous biaxial anisotropic formation. <i>Geophysics</i> , 2010 , 75, E101-E114	3.1	19
50	An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 095103	1.7	22
49	Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks. <i>Optics Express</i> , 2010 , 18, 13038-43	3.3	23
48	Distributed external cloak without embedded antiobjects. <i>Optics Letters</i> , 2010 , 35, 2642-4	3	26
47	Inverse design mechanism of cylindrical cloaks without knowledge of the required coordinate transformation. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2010 , 27, 1079-82	1.8	15
46	Adaptive two-step calibration for high-resolution and wide-swath SAR imaging. <i>IET Radar, Sonar and Navigation</i> , 2010 , 4, 548	1.4	46
45	Experimental research of unsupervised Cameron/maximum-likelihood classification method for fully polarimetric synthetic aperture radar data. <i>IET Radar, Sonar and Navigation</i> , 2010 , 4, 85	1.4	6
44	Timefrequency imaging algorithm for high-speed spinning targets in two dimensions. <i>IET Radar, Sonar and Navigation</i> , 2010 , 4, 806	1.4	13
43	Creating Rigorous Open Cloaks. <i>Journal of Electromagnetic Waves and Applications</i> , 2010 , 24, 1839-184	7 1.3	13
42	SAR imaging and Doppler ambiguity removal with distributed microsatellite arrays. <i>International Journal of Remote Sensing</i> , 2010 , 31, 6441-6458	3.1	2

41	Achieving Invisibility of Homogeneous Cylindrically Anisotropic Cylinders. <i>Plasmonics</i> , 2010 , 5, 251-258	2.4	37
40	. IEEE Transactions on Geoscience and Remote Sensing, 2010 , 48, 3824-3838	8.1	205
39	Motion Parameter Estimation in the SAR System With Low PRF Sampling. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2010 , 7, 450-454	4.1	31
38	Transformation-based spherical cloaks designed by an implicit transformation-independent method: theory and optimization. <i>New Journal of Physics</i> , 2009 , 11, 113001	2.9	28
37	Scattering characteristics from conducting cylinder with reconstructing electromagnetic cloaking layers 2009 ,		1
36	Azimuth preprocessing for monostatic and bistatic spotlight synthetic aperture radar maging based on spectral analysis convolution. <i>Journal of Applied Remote Sensing</i> , 2009 , 3, 033565	1.4	
35	Two-Dimensional Spectrum Matched Filter Banks for High-Speed Spinning-Target Three-Dimensional ISAR Imaging. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2009 , 6, 368-372	4.1	8
34	. IEEE Geoscience and Remote Sensing Letters, 2009 , 6, 567-571	4.1	157
33	Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks. <i>Physical Review E</i> , 2009 , 80, 016604	2.4	44
32	Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings. <i>Optics Express</i> , 2009 , 17, 13467-78	3.3	43
31	Spherical cloaking with homogeneous isotropic multilayered structures. <i>Physical Review E</i> , 2009 , 79, 04	7 <u>6.Q</u> 2	103
30	Exact Solution to Electromagnetic Scattering by an Impedance Sphere Coated With a Uniaxial Anisotropic Layer. <i>IEEE Transactions on Antennas and Propagation</i> , 2009 , 57, 572-576	4.9	29
29	Unambiguous Reconstruction and High-Resolution Imaging for Multiple-Channel SAR and Airborne Experiment Results. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2009 , 6, 102-106	4.1	22
28	Chiral nihility effects on energy flow in chiral materials. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2008 , 25, 55-63	1.8	49
27	Peculiarities in light scattering by spherical particles with radial anisotropy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2008 , 25, 1623-8	1.8	28
26	Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction, and prediction. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 1728	1.7	36
25	Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. <i>Optics Express</i> , 2008 , 16, 14390-6	3.3	99
24	Full-wave analysis of extraordinary backscattering by a layered plasmonic nanosphere. <i>Journal of Applied Physics</i> , 2008 , 104, 034909	2.5	4

23	Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 92, 773-776	2.6	29
22	Elliptically shaped ultra-wideband patch antenna with band-notch features. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 736-738	1.2	26
21	Scattering properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials. <i>Radio Science</i> , 2007 , 42, n/a-n/a	1.4	12
20	Sensitivity analysis of iterative adjoint technique for microstrip circuits optimization. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 607-609	1.2	
19	Hybrid shaped ultra-wideband antenna. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 2412-2415	1.2	10
18	Comment on \blacksquare egative refractive index in gyrotropically magnetoelectric media \blacksquare <i>Physical Review B</i> , 2007 , 75,	3.3	7
17	Routes to left-handed materials by magnetoelectric couplings. <i>Physical Review B</i> , 2007 , 75,	3.3	38
16	Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies. <i>Physical Review E</i> , 2007 , 75, 026609	2.4	66
15	Eigenfunctional representation of dyadic Green's functions in multilayered gyrotropic chiral media. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 5751-5766	2	8
14	. IEEE Transactions on Antennas and Propagation, 2007 , 55, 240-244	4.9	1
13	Backward waves in magnetoelectrically chiral media: Propagation, impedance, and negative refraction. <i>Physical Review B</i> , 2007 , 75,	3.3	49
12	Modified Spherical Wave Functions With Anisotropy Ratio: Application to the Analysis of Scattering by Multilayered Anisotropic Shells. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 3515-3523	4.9	46
11	Electromagnetic Scattering Properties in a Multilayered Metamaterial Cylinder. <i>IEICE Transactions on Communications</i> , 2007 , E90-B, 2423-2429	0.5	10
10	Homogenization of 3-D Periodic Bianisotropic Metamaterials. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2006 , 54, 3893-3898	4.1	39
9	On the constitutive relations of G-chiral media and the possibility to realize negative-index media. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 2534-2538	1.2	12
8	Properties of Faraday chiral media: Green dyadics and negative refraction. <i>Physical Review B</i> , 2006 , 74,	3.3	14
7	Field Representations in General Gyrotropic Media in Spherical Coordinates. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2005 , 4, 467-470	3.8	20
6	Diffusive topological transport in spatiotemporal thermal lattices. <i>Nature Physics</i> ,	16.2	

5

Creating Rigorous Open Cloaks

4	A Modular Design of Continuously Tunable Full Color Plasmonic Pixels with Broken Rotational Symmetry. <i>Advanced Functional Materials</i> ,2108437	15.6	O
3	Multidimensional nanoscopic chiroptics. Nature Reviews Physics,	23.6	14
2	Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nature Photonics,	33.9	22
1	Programmable Controlling of Multiple Spatial Harmonics via a Nonlinearly-Phased Grating Metasurface. Advanced Functional Materials, 2203120	15.6	1

1