Cheng Wei Qiu

List of Publications by Citations

Source: https://exaly.com/author-pdf/5556692/cheng-wei-qiu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21,613 80 418 127 h-index g-index citations papers 28,237 481 11.4 7.47 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
418	Three-dimensional optical holography using a plasmonic metasurface. <i>Nature Communications</i> , 2013 , 4,	17.4	844
417	Dual-polarity plasmonic metalens for visible light. <i>Nature Communications</i> , 2012 , 3, 1198	17.4	745
416	Electromagnetic reprogrammable coding-metasurface holograms. <i>Nature Communications</i> , 2017 , 8, 197	7 17.4	480
415	Plasmonic color palettes for photorealistic printing with aluminum nanostructures. <i>Nano Letters</i> , 2014 , 14, 4023-9	11.5	410
414	Experimental demonstration of a bilayer thermal cloak. <i>Physical Review Letters</i> , 2014 , 112, 054302	7.4	362
413	Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. <i>Advanced Materials</i> , 2015 , 27, 1195-200	24	341
412	A Reconfigurable Active Huygens' Metalens. <i>Advanced Materials</i> , 2017 , 29, 1606422	24	301
411	Spin and wavelength multiplexed nonlinear metasurface holography. <i>Nature Communications</i> , 2016 , 7, 11930	17.4	290
410	Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. <i>Advanced Materials</i> , 2016 , 28, 2533-9	24	289
409	Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. <i>Light: Science and Applications</i> , 2017 , 6, e17039	16.7	285
408	Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. <i>Advanced Materials</i> , 2014 , 26, 1731-4	24	262
407	Advances in Full Control of Electromagnetic Waves with Metasurfaces. <i>Advanced Optical Materials</i> , 2016 , 4, 818-833	8.1	240
406	Recent advances in the spin Hall effect of light. <i>Reports on Progress in Physics</i> , 2017 , 80, 066401	14.4	231
405	Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. <i>Science Advances</i> , 2016 , 2, e1501168	14.3	218
404	Three-dimensional plasmonic stereoscopic prints in full colour. <i>Nature Communications</i> , 2014 , 5, 5361	17.4	218
403	Color generation via subwavelength plasmonic nanostructures. <i>Nanoscale</i> , 2015 , 7, 6409-19	7.7	214
402	Single gradientless light beam drags particles as tractor beams. <i>Physical Review Letters</i> , 2011 , 107, 2036	5 9 14	209

401	. IEEE Transactions on Geoscience and Remote Sensing, 2010 , 48, 3824-3838	8.1	205
400	Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. <i>Nature Communications</i> , 2016 , 7, 11283	17.4	201
399	Machine-learning reprogrammable metasurface imager. <i>Nature Communications</i> , 2019 , 10, 1082	17.4	194
398	Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface. <i>Scientific Reports</i> , 2015 , 5, 15020	4.9	189
397	Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2015 , 63, 1817-1825	4.1	188
396	Topological polaritons and photonic magic angles in twisted ⊞MoO bilayers. <i>Nature</i> , 2020 , 582, 209-213	50.4	174
395	Homogeneous thermal cloak with constant conductivity and tunable heat localization. <i>Scientific Reports</i> , 2013 , 3, 1593	4.9	161
394	. IEEE Geoscience and Remote Sensing Letters, 2009 , 6, 567-571	4.1	157
393	Illusion Thermotics. Advanced Materials, 2018, 30, e1707237	24	155
392	Nano-optic endoscope for high-resolution optical coherence tomography. <i>Nature Photonics</i> , 2018 , 12, 540-547	33.9	145
391	Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields. <i>Advanced Materials</i> , 2015 , 27, 7752-8	24	145
390	Silicon multi-meta-holograms for the broadband visible light. <i>Laser and Photonics Reviews</i> , 2016 , 10, 500	D&59	143
389	Giant intrinsic chiro-optical activity in planar dielectric nanostructures. <i>Light: Science and Applications</i> , 2018 , 7, 17158	16.7	141
388	Longitudinal Multifoci Metalens for Circularly Polarized Light. Advanced Optical Materials, 2015, 3, 1201	-8 <u>2</u> 06	140
387	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene-Black Phosphorus Heterostructure. <i>ACS Applied Materials & Englished Formal Science (Note: Acs Applied Materials & Englished (Note: Acs Applied (Not</i>	9.5	138
386	Coherent steering of nonlinear chiral valley photons with a synthetic AuWS2 metasurface. <i>Nature Photonics</i> , 2019 , 13, 467-472	33.9	135
385	Structured thermal surface for radiative camouflage. <i>Nature Communications</i> , 2018 , 9, 273	17.4	134
384	Photonics and Optoelectronics of 2D Metal-Halide Perovskites. <i>Small</i> , 2018 , 14, e1800682	11	128

383	Noninterleaved Metasurface for (2-1) Spin- and Wavelength-Encoded Holograms. <i>Nano Letters</i> , 2018 , 18, 8016-8024	11.5	125
382	Shaping a Subwavelength Needle with Ultra-long Focal Length by Focusing Azimuthally Polarized Light. <i>Scientific Reports</i> , 2015 , 5, 9977	4.9	124
381	Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light. <i>ACS Nano</i> , 2017 , 11, 9382-9389	16.7	122
380	Single-Layer Metasurface with Controllable Multiwavelength Functions. <i>Nano Letters</i> , 2018 , 18, 2420-2	4 27 .5	119
379	Intelligent metasurface imager and recognizer. Light: Science and Applications, 2019, 8, 97	16.7	119
378	Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection. <i>Scientific Reports</i> , 2013 , 3, 2537	4.9	117
377	Anti-parity-time symmetry in diffusive systems. <i>Science</i> , 2019 , 364, 170-173	33.3	116
376	High-purity orbital angular momentum states from a visible metasurface laser. <i>Nature Photonics</i> , 2020 , 14, 498-503	33.9	114
375	Nanometer-precision linear sorting with synchronized optofluidic dual barriers. <i>Science Advances</i> , 2018 , 4, eaao0773	14.3	114
374	Ultrahigh-capacity non-periodic photon sieves operating in visible light. <i>Nature Communications</i> , 2015 , 6, 7059	17.4	113
373	Thermal meta-device in analogue of zero-index photonics. <i>Nature Materials</i> , 2019 , 18, 48-54	27	112
372	Redirection of sound waves using acoustic metasurface. <i>Applied Physics Letters</i> , 2013 , 103, 151604	3.4	111
371	A Minimalist Single-Layer Metasurface for Arbitrary and Full Control of Vector Vortex Beams. <i>Advanced Materials</i> , 2020 , 32, e1905659	24	111
370	Directional Janus Metasurface. <i>Advanced Materials</i> , 2020 , 32, e1906352	24	111
369	Optimization-free superoscillatory lens using phase and amplitude masks. <i>Laser and Photonics Reviews</i> , 2014 , 8, 152-157	8.3	109
368	An optically driven digital metasurface for programming electromagnetic functions. <i>Nature Electronics</i> , 2020 , 3, 165-171	28.4	108
367	An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface. <i>Optics Express</i> , 2015 , 23, 11114-22	3.3	107
366	Linear momentum increase and negative optical forces at dielectric interface. <i>Nature Photonics</i> , 2013 , 7, 787-790	33.9	104

(2020-2009)

365	Spherical cloaking with homogeneous isotropic multilayered structures. <i>Physical Review E</i> , 2009 , 79, 047	′ <u>6.0</u> 2	103
364	A Fully Phase-Modulated Metasurface as An Energy-Controllable Circular Polarization Router. <i>Advanced Science</i> , 2020 , 7, 2001437	13.6	103
363	Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. <i>Light: Science and Applications</i> , 2019 , 8, 3	16.7	103
362	Low-Loss Spoof Surface Plasmon Slow-Wave Transmission Lines With Compact Transition and High Isolation. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2016 , 64, 3078-3086	4.1	102
361	Symmetry-breaking-induced nonlinear optics at a microcavity surface. <i>Nature Photonics</i> , 2019 , 13, 21-24	33.9	100
360	Lead Halide Perovskite Nanostructures for Dynamic Color Display. <i>ACS Nano</i> , 2018 , 12, 8847-8854	16.7	99
359	Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. <i>Energy and Environmental Science</i> , 2013 , 6, 3537	35.4	99
358	Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. <i>Optics Express</i> , 2008 , 16, 14390-6	3.3	99
357	A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance. <i>Advanced Materials</i> , 2017 , 29, 1602721	24	96
356	Slow cooling and efficient extraction of C-exciton hot carriers in MoS monolayer. <i>Nature Communications</i> , 2017 , 8, 13906	17.4	95
355	Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. <i>Light: Science and Applications</i> , 2019 , 8, 95	16.7	95
354	A Single-Layered Spoof-Plasmon-Mode Leaky Wave Antenna With Consistent Gain. <i>IEEE Transactions on Antennas and Propagation</i> , 2017 , 65, 681-687	4.9	93
353	Structural color three-dimensional printing by shrinking photonic crystals. <i>Nature Communications</i> , 2019 , 10, 4340	17.4	93
352	Trichromatic and Tripolarization-Channel Holography with Noninterleaved Dielectric Metasurface. <i>Nano Letters</i> , 2020 , 20, 994-1002	11.5	92
351	Creation of Ghost Illusions Using Wave Dynamics in Metamaterials. <i>Advanced Functional Materials</i> , 2013 , 23, 4028-4034	15.6	89
350	Light-Controllable Digital Coding Metasurfaces. <i>Advanced Science</i> , 2018 , 5, 1801028	13.6	87
349	Chirality-Assisted High-Efficiency Metasurfaces with Independent Control of Phase, Amplitude, and Polarization. <i>Advanced Optical Materials</i> , 2018 , 7, 1801479	8.1	87
348	Malus-metasurface-assisted polarization multiplexing. <i>Light: Science and Applications</i> , 2020 , 9, 101	16.7	86

347	Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. <i>Nature Communications</i> , 2018 , 9, 815	17.4	85
346	Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. <i>Light: Science and Applications</i> , 2020 , 9, 139	16.7	85
345	Plasmonic-Assisted Graphene Oxide Artificial Muscles. <i>Advanced Materials</i> , 2019 , 31, e1806386	24	85
344	Twisted Acoustics: Metasurface-Enabled Multiplexing and Demultiplexing. <i>Advanced Materials</i> , 2018 , 30, e1800257	24	84
343	Dynamic Janus Metasurfaces in the Visible Spectral Region. <i>Nano Letters</i> , 2018 , 18, 4584-4589	11.5	83
342	Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. <i>Scientific Reports</i> , 2014 , 4, 5537	4.9	81
341	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. <i>ACS Photonics</i> , 2019 , 6, 211-220	6.3	81
340	Micro-Doppler Effect Analysis and Feature Extraction in ISAR Imaging With Stepped-Frequency Chirp Signals. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2010 , 48, 2087-2098	8.1	80
339	Nanophotonic Structural Colors. ACS Photonics, 2021, 8, 18-33	6.3	80
338	Broadband Achromatic Metasurface-Refractive Optics. <i>Nano Letters</i> , 2018 , 18, 7801-7808	11.5	79
337	Full-space Cloud of Random Points with a Scrambling Metasurface. <i>Light: Science and Applications</i> , 2018 , 7, 63	16.7	76
336	Moir[Hyperbolic Metasurfaces. <i>Nano Letters</i> , 2020 , 20, 3217-3224	11.5	75
335	Broadband and stable acoustic vortex emitter with multi-arm coiling slits. <i>Applied Physics Letters</i> , 2016 , 108, 203501	3.4	75
334	Spoof Plasmon-Based Slow-Wave Excitation of Dielectric Resonator Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2016 , 64, 2094-2099	4.9	73
333	3D Metaphotonic Nanostructures with Intrinsic Chirality. <i>Advanced Functional Materials</i> , 2018 , 28, 1803	1 43 .6	73
332	Metasurface holographic image projection based on mathematical properties of Fourier transform. <i>PhotoniX</i> , 2020 , 1,	19	72
331	Encrypted Thermal Printing with Regionalization Transformation. Advanced Materials, 2019, 31, e18078	494	70
330	All-Optical Chirality-Sensitive Sorting via Reversible Lateral Forces in Interference Fields. <i>ACS Nano</i> , 2017 , 11, 4292-4300	16.7	69

329	Upconversion superburst with sub-2 ☐ lifetime. <i>Nature Nanotechnology</i> , 2019 , 14, 1110-1115	28.7	69	
328	Broadband Generation of Photonic Spin-Controlled Arbitrary Accelerating Light Beams in the Visible. <i>Nano Letters</i> , 2019 , 19, 1158-1165	11.5	69	
327	Transforming heat transfer with thermal metamaterials and devices. <i>Nature Reviews Materials</i> , 2021 , 6, 488-507	73.3	68	
326	Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications. <i>Advanced Materials</i> , 2018 , 30, e1704556	24	67	
325	Broadband all-dielectric magnifying lens for far-field high-resolution imaging. <i>Advanced Materials</i> , 2013 , 25, 6963-8	24	66	
324	Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies. <i>Physical Review E</i> , 2007 , 75, 026609	2.4	66	
323	Thermal Conductance of the 2D MoS/h-BN and graphene/h-BN Interfaces. <i>Scientific Reports</i> , 2017 , 7, 43886	4.9	64	
322	Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. <i>Light: Science and Applications</i> , 2018 , 7, 17156	16.7	64	
321	Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams. <i>Light: Science and Applications</i> , 2015 , 4, e278-e278	16.7	63	
320	Manipulation of acoustic focusing with an active and configurable planar metasurface transducer. <i>Scientific Reports</i> , 2014 , 4, 6257	4.9	62	
319	Material-independent and size-independent tractor beams for dipole objects. <i>Physical Review Letters</i> , 2012 , 109, 023902	7.4	61	
318	Full-Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry. <i>Advanced Materials</i> , 2018 , 30, e1804019	24	61	
317	Reprogrammable meta-hologram for optical encryption. <i>Nature Communications</i> , 2020 , 11, 5484	17.4	60	
316	Roadmap on superoscillations. <i>Journal of Optics (United Kingdom)</i> , 2019 , 21, 053002	1.7	59	
315	Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. <i>Nature Electronics</i> , 2019 , 2, 335-342	28.4	59	
314	Ultrahigh-contrast-ratio silicon Fano diode. <i>Physical Review A</i> , 2012 , 85,	2.6	59	
313	Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. <i>ACS Nano</i> , 2018 , 12, 1859-1867	16.7	58	
312	Visible Surface Plasmon Modes in Single BillelNanoplate. <i>Nano Letters</i> , 2015 , 15, 8331-5	11.5	57	

311	Manipulation of Orbital-Angular-Momentum Spectrum Using Pinhole Plates. <i>Physical Review Applied</i> , 2019 , 12,	4.3	57
310	Effects of edge on graphene plasmons as revealed by infrared nanoimaging. <i>Light: Science and Applications</i> , 2017 , 6, e16204	16.7	56
309	Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. <i>Science Advances</i> , 2020 , 6, eaba3367	14.3	56
308	Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. <i>Nature Communications</i> , 2019 , 10, 2085	17.4	55
307	Wavenumber-Splitting Metasurfaces Achieve Multichannel Diffusive Invisibility. <i>Advanced Optical Materials</i> , 2018 , 6, 1800010	8.1	55
306	On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. <i>Nanoscale</i> , 2016 , 8, 2227-33	7.7	54
305	Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. <i>Light: Science and Applications</i> , 2020 , 9, 62	16.7	54
304	Laser-Splashed Three-Dimensional Plasmonic Nanovolcanoes for Steganography in Angular Anisotropy. <i>ACS Nano</i> , 2018 , 12, 9233-9239	16.7	54
303	Manipulating DC currents with bilayer bulk natural materials. Advanced Materials, 2014, 26, 3478-83	24	53
302	Reversible Three-Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens. <i>Advanced Optical Materials</i> , 2013 , 1, 517-521	8.1	53
301	Actively Tunable Visible Surface Plasmons in Bi2 Te3 and their Energy-Harvesting Applications. <i>Advanced Materials</i> , 2016 , 28, 3138-44	24	53
300	Quantum plasmonics get applied. <i>Progress in Quantum Electronics</i> , 2019 , 65, 1-20	9.1	50
299	Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials. <i>Scientific Reports</i> , 2015 , 5, 10242	4.9	50
298	Dielectric multi-momentum meta-transformer in the visible. <i>Nature Communications</i> , 2019 , 10, 4789	17.4	50
297	Polarization-Controlled Dual-Programmable Metasurfaces. <i>Advanced Science</i> , 2020 , 7, 1903382	13.6	50
296	Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. <i>Light: Science and Applications</i> , 2018 , 7, 18003	16.7	50
295	Chiral nihility effects on energy flow in chiral materials. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2008 , 25, 55-63	1.8	49
294	Backward waves in magnetoelectrically chiral media: Propagation, impedance, and negative refraction. <i>Physical Review B</i> , 2007 , 75,	3.3	49

(2009-2020)

293	Phonon Polaritons and Hyperbolic Response in van der Waals Materials. <i>Advanced Optical Materials</i> , 2020 , 8, 1901393	8.1	49
292	Flat Helical Nanosieves. <i>Advanced Functional Materials</i> , 2016 , 26, 5255-5262	15.6	48
291	Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. <i>ELight</i> , 2022 , 2,		48
290	Thermal camouflaging metamaterials. <i>Materials Today</i> , 2021 , 45, 120-141	21.8	48
289	0.2 Thick Adaptive Retroreflector Made of Spin-Locked Metasurface. <i>Advanced Materials</i> , 2018 , 30, e1802721	24	47
288	Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 22959-22965	11.5	47
287	Optical pulling forces and their applications. Advances in Optics and Photonics, 2020, 12, 288	16.7	47
286	Adaptive two-step calibration for high-resolution and wide-swath SAR imaging. <i>IET Radar, Sonar and Navigation</i> , 2010 , 4, 548	1.4	46
285	Modified Spherical Wave Functions With Anisotropy Ratio: Application to the Analysis of Scattering by Multilayered Anisotropic Shells. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 3515-3523	4.9	46
284	Superoscillation: from physics to optical applications. <i>Light: Science and Applications</i> , 2019 , 8, 56	16.7	45
283	Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers. <i>ACS Nano</i> , 2014 , 8, 9188-98	16.7	45
282	. IEEE Transactions on Antennas and Propagation, 2020 , 68, 1332-1347	4.9	44
281	Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial RayleighBommerfeld method. <i>Laser Physics Letters</i> , 2013 , 10, 065004	1.5	44
280	Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials. <i>Optics Letters</i> , 2011 , 36, 181-3	3	44
279	Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks. <i>Physical Review E</i> , 2009 , 80, 016604	2.4	44
278	Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints. <i>Research</i> , 2018 , 2018, 810905	5 4 .8	44
277	Graphene-based photonic crystal to steer giant Faraday rotation. Applied Physics Letters, 2012, 100, 241	15046	43
276	Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings. <i>Optics Express</i> , 2009 , 17, 13467-78	3.3	43

275	Breaking Anti-PT Symmetry by Spinning a Resonator. <i>Nano Letters</i> , 2020 , 20, 7594-7599	11.5	43
274	Tunable Metasurfaces: Kerker-Conditioned Dynamic Cryptographic Nanoprints (Advanced Optical Materials 4/2019). <i>Advanced Optical Materials</i> , 2019 , 7, 1970016	8.1	42
273	Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews, 2020, 120, 6197-6246	68.1	42
272	Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride. <i>Nano Letters</i> , 2019 , 19, 1009-101	411.5	42
271	Meta-optics achieves RGB-achromatic focusing for virtual reality. <i>Science Advances</i> , 2021 , 7,	14.3	42
270	Engineered disorder in photonics. <i>Nature Reviews Materials</i> , 2021 , 6, 226-243	73.3	41
269	Localized Self-Growth of Reconfigurable Architectures Induced by a Femtosecond Laser on a Shape-Memory Polymer. <i>Advanced Materials</i> , 2018 , 30, e1803072	24	41
268	Doublet Thermal Metadevice. Physical Review Applied, 2019, 11,	4.3	40
267	Unveiling the correlation between non-diffracting tractor beam and its singularity in Poynting vector. <i>Laser and Photonics Reviews</i> , 2015 , 9, 75-82	8.3	40
266	Twisted Focusing of Optical Vortices with Broadband Flat Spiral Zone Plates. <i>Advanced Optical Materials</i> , 2014 , 2, 1193-1198	8.1	40
265	Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. <i>Nanoscale</i> , 2014 , 6, 12303-9	7.7	39
264	Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission. <i>Physical Review B</i> , 2013 , 88,	3.3	39
263	Homogenization of 3-D Periodic Bianisotropic Metamaterials. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2006 , 54, 3893-3898	4.1	39
262	Polarization-insensitive 3D conformal-skin metasurface cloak. <i>Light: Science and Applications</i> , 2021 , 10, 75	16.7	39
261	Vortex generation reaches a new plateau. <i>Science</i> , 2017 , 357, 645	33.3	38
260	Routes to left-handed materials by magnetoelectric couplings. <i>Physical Review B</i> , 2007 , 75,	3.3	38
259	Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. <i>Nature Communications</i> , 2020 , 11, 6404	17.4	37
258	Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. <i>Nature Communications</i> , 2019 , 10, 3411	17.4	37

(2020-2010)

257	Achieving Invisibility of Homogeneous Cylindrically Anisotropic Cylinders. <i>Plasmonics</i> , 2010 , 5, 251-258	2.4	37
256	Three-dimensional supercritical resolved light-induced magnetic holography. <i>Science Advances</i> , 2017 , 3, e1701398	14.3	36
255	Arbitrary and Independent Polarization Control In Situ via a Single Metasurface. <i>Advanced Optical Materials</i> , 2018 , 6, 1800728	8.1	36
254	Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light. <i>Optics Letters</i> , 2014 , 39, 630-3	3	36
253	Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. <i>Optics Letters</i> , 2012 , 37, 4955-7	3	36
252	Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction, and prediction. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 1728	1.7	36
251	Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields. Journal of Optics (United Kingdom), 2016 , 18, 044003	1.7	36
250	Self-Induced Backaction Optical Pulling Force. <i>Physical Review Letters</i> , 2018 , 120, 123901	7.4	35
249	Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. <i>Nanoscale</i> , 2013 , 5, 3373-9	7.7	35
248	Photonic tractor beams: a review. <i>Advanced Photonics</i> , 2019 , 1, 1	8.1	35
248 247	Photonic tractor beams: a review. <i>Advanced Photonics</i> , 2019 , 1, 1 Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663	8.1	35 35
	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for	17.4	
247	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663	17.4	35 35
247 246	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663 Kerker-Conditioned Dynamic Cryptographic Nanoprints. <i>Advanced Optical Materials</i> , 2018 , 7, 1801070	17.4 8.1	35 35
247246245	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663 Kerker-Conditioned Dynamic Cryptographic Nanoprints. <i>Advanced Optical Materials</i> , 2018 , 7, 1801070 Living Nanospear for Near-Field Optical Probing. <i>ACS Nano</i> , 2018 , 12, 10703-10711 Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored	17.4 8.1 16.7	35 35 35
247246245244	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663 Kerker-Conditioned Dynamic Cryptographic Nanoprints. <i>Advanced Optical Materials</i> , 2018 , 7, 1801070 Living Nanospear for Near-Field Optical Probing. <i>ACS Nano</i> , 2018 , 12, 10703-10711 Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension. <i>ACS Photonics</i> , 2016 , 3, 1986-1992	17.4 8.1 16.7	35 35 35 34
247246245244243	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663 Kerker-Conditioned Dynamic Cryptographic Nanoprints. <i>Advanced Optical Materials</i> , 2018 , 7, 1801070 Living Nanospear for Near-Field Optical Probing. <i>ACS Nano</i> , 2018 , 12, 10703-10711 Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension. <i>ACS Photonics</i> , 2016 , 3, 1986-1992 Quo Vadis, Metasurfaces?. <i>Nano Letters</i> , 2021 , 21, 5461-5474 From Lingering to Rift: Metasurface Decoupling for Near- and Far-Field Functionalization. <i>Advanced</i>	17.4 8.1 16.7 6.3	35 35 35 34 34

239	Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS. ACS Nano, 2020, 14, 4636-4645	16.7	32
238	Engineering light-matter interaction for emerging optical manipulation applications. <i>Nanophotonics</i> , 2014 , 3, 181-201	6.3	32
237	Micro-Doppler feature extraction for wideband imaging radar based on complex image orthogonal matching pursuit decomposition. <i>IET Radar, Sonar and Navigation</i> , 2013 , 7, 914-924	1.4	32
236	A Single Noninterleaved Metasurface for High-Capacity and Flexible Mode Multiplexing of Higher-Order Poincarl Sphere Beams. <i>Advanced Materials</i> , 2020 , 32, e1903983	24	32
235	Ghost spintronic THz-emitter-array microscope. <i>Light: Science and Applications</i> , 2020 , 9, 99	16.7	31
234	Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials. <i>Physical Review Letters</i> , 2013 , 111, 133901	7.4	31
233	Motion Parameter Estimation in the SAR System With Low PRF Sampling. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2010 , 7, 450-454	4.1	31
232	Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. <i>Light: Science and Applications</i> , 2020 , 9, 137	16.7	30
231	Nanophotonic Array-Induced Dynamic Behavior for Label-Free Shape-Selective Bacteria Sieving. <i>ACS Nano</i> , 2019 , 13, 12070-12080	16.7	29
230	Radiation pressure of active dispersive chiral slabs. <i>Optics Express</i> , 2015 , 23, 16546-53	3.3	29
229	Large-Area Graphene Nanodot Array for Plasmon-Enhanced Infrared Spectroscopy. Small, 2016, 12, 13	02 <u>-</u> 8	29
228	Exact Solution to Electromagnetic Scattering by an Impedance Sphere Coated With a Uniaxial Anisotropic Layer. <i>IEEE Transactions on Antennas and Propagation</i> , 2009 , 57, 572-576	4.9	29
227	Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 92, 773-776	2.6	29
226	Hybridized Hyperbolic Surface Phonon Polaritons at EMoO and Polar Dielectric Interfaces. <i>Nano Letters</i> , 2021 , 21, 3112-3119	11.5	29
225	Tailoring Light with Layered and Moir[Metasurfaces. <i>Trends in Chemistry</i> , 2021 , 3, 342-358	14.8	29
224	Controlling Lateral Fano Interference Optical Force with Au ß e2Sb2Te5 Hybrid Nanostructure. <i>ACS Photonics</i> , 2016 , 3, 1934-1942	6.3	28
223	Diameter-bandwidth product limitation of isolated-object cloaking. <i>Physical Review A</i> , 2012 , 86,	2.6	28
222	Transformation-based spherical cloaks designed by an implicit transformation-independent method: theory and optimization. <i>New Journal of Physics</i> , 2009 , 11, 113001	2.9	28

(2018-2008)

221	Peculiarities in light scattering by spherical particles with radial anisotropy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2008 , 25, 1623-8	1.8	28
220	Spin-Encoded Wavelength-Direction Multitasking Janus Metasurfaces. <i>Advanced Optical Materials</i> , 2021 , 9, 2100190	8.1	28
219	Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. <i>Science Advances</i> , 2021 , 7,	14.3	28
218	Interface nano-optics with van der Waals polaritons. <i>Nature</i> , 2021 , 597, 187-195	50.4	28
217	HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H homoeostasis. <i>Plant Biotechnology Journal</i> , 2020 , 18, 1683-1696	11.6	27
216	Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	27
215	A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal-Insulator Transition. <i>Advanced Materials</i> , 2020 , 32, e1907071	24	27
214	Compact Aberration-Corrected Spectrometers in the Visible Using Dispersion-Tailored Metasurfaces. <i>Advanced Optical Materials</i> , 2019 , 7, 1801144	8.1	27
213	Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays. <i>Nanoscale</i> , 2015 , 7, 12018-22	7.7	26
212	Exchange Bias in van der Waals CrCl/FeGeTe Heterostructures. <i>Nano Letters</i> , 2020 , 20, 5030-5035	11.5	26
211	Multiband Switchable Terahertz Quarter-Wave Plates via Phase-Change Metasurfaces. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-8	1.8	26
210	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. <i>Optics Express</i> , 2011 , 19, 13020-30	3.3	26
209	Distributed external cloak without embedded antiobjects. <i>Optics Letters</i> , 2010 , 35, 2642-4	3	26
208	Elliptically shaped ultra-wideband patch antenna with band-notch features. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 736-738	1.2	26
207	Integrated Molar Chiral Sensing Based on High- Metasurface. <i>Nano Letters</i> , 2020 , 20, 8696-8703	11.5	26
206	Steering valley-polarized emission of monolayer MoS sandwiched in plasmonic antennas. <i>Science Advances</i> , 2020 , 6, eaao0019	14.3	25
205	Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. <i>Optics Express</i> , 2018 , 26, 22916-22925	3.3	25
204	Full Modeling, Loss Reduction, and Mutual Coupling Control of Spoof Surface Plasmon-Based Meander Slow Wave Transmission Lines. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2018 , 66, 3764-3772	4.1	25

203	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. <i>Research</i> , 2020 , 2020, 9085782	7.8	25
202	Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. <i>Nature Communications</i> , 2021 , 12, 2974	17.4	25
201	Twisted Surface Plasmons with Spin-Controlled Gold Surfaces. Advanced Optical Materials, 2019, 7, 180	1 86 0	25
200	Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. <i>Nano Letters</i> , 2019 , 19, 3830-3837	11.5	24
199	Versatile total angular momentum generation using cascaded J-plates. <i>Optics Express</i> , 2019 , 27, 7469-7	′4 84	24
198	Enabling low amounts of YAG:Ce(3+) to convert blue into white light with plasmonic Au nanoparticles. <i>Nanoscale</i> , 2015 , 7, 10350-6	7.7	24
197	Optical Potential-Well Array for High-Selectivity, Massive Trapping and Sorting at Nanoscale. <i>Nano Letters</i> , 2020 , 20, 5193-5200	11.5	24
196	Wavefront manipulation by acoustic metasurfaces: from physics and applications. <i>Nanophotonics</i> , 2018 , 7, 1191-1205	6.3	24
195	Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm. <i>ACS Nano</i> , 2019 , 13, 821-829	16.7	24
194	Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum. <i>ACS Nano</i> , 2021 , 15, 2893-2900	16.7	24
193	Pulling extremely anisotropic lossy particles using light without intensity gradient. <i>Physical Review A</i> , 2014 , 90,	2.6	23
192	Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks. <i>Optics Express</i> , 2010 , 18, 13038-43	3.3	23
191	Multidimensional phase singularities in nanophotonics. <i>Science</i> , 2021 , 374, eabj0039	33.3	23
190	Perturbative countersurveillance metaoptics with compound nanosieves. <i>Light: Science and Applications</i> , 2019 , 8, 101	16.7	23
189	Metafluidic metamaterial: a review. Advances in Physics: X, 2018, 3, 1417055	5.1	22
188	An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 095103	1.7	22
187	Unambiguous Reconstruction and High-Resolution Imaging for Multiple-Channel SAR and Airborne Experiment Results. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2009 , 6, 102-106	4.1	22
186	Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nature Photonics,	33.9	22

(2021-2020)

185	Enhancing the modal purity of orbital angular momentum photons. APL Photonics, 2020, 5, 070802	5.2	22
184	Tunable analog thermal material. <i>Nature Communications</i> , 2020 , 11, 6028	17.4	22
183	Floating solid-state thin films with dynamic structural colour. <i>Nature Nanotechnology</i> , 2021 , 16, 795-801	28.7	22
182	Mid-infrared semimetal polarization detectors with configurable polarity transition. <i>Nature Photonics</i> , 2021 , 15, 614-621	33.9	22
181	Ghost hyperbolic surface polaritons in bulk anisotropic crystals. <i>Nature</i> , 2021 , 596, 362-366	50.4	22
180	Fano resonant Ge2Sb2Te5 nanoparticles realize switchable lateral optical force. <i>Nanoscale</i> , 2016 , 8, 565	5 76 6	21
179	Artificial intelligence: A powerful paradigm for scientific research. Innovation(China), 2021, 2, 100179	17.8	21
178	. IEEE Transactions on Antennas and Propagation, 2021 , 69, 229-238	4.9	21
177	Optically induced atomic lattice with tunable near-field and far-field diffraction patterns. <i>Photonics Research</i> , 2017 , 5, 676	6	20
176	Field Representations in General Gyrotropic Media in Spherical Coordinates. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2005 , 4, 467-470	3.8	20
175	Anomalous Shift Behaviors in the Photoluminescence of Dolmen-Like Plasmonic Nanostructures. <i>ACS Photonics</i> , 2016 , 3, 979-984	6.3	20
174	Ultrasensitive Transmissive Infrared Spectroscopy via Loss Engineering of Metallic Nanoantennas for Compact Devices. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 47270-47278	9.5	20
173	Off-Axis Holography with Uniform Illumination via 3D Printed Diffractive Optical Elements. <i>Advanced Optical Materials</i> , 2019 , 7, 1900068	8.1	19
172	Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation. <i>Science China: Physics, Mechanics and Astronomy</i> , 2015 , 58, 1	3.6	19
171	Simulation of full responses of a triaxial induction tool in a homogeneous biaxial anisotropic formation. <i>Geophysics</i> , 2010 , 75, E101-E114	3.1	19
170	Nearly lattice-matched molybdenum disulfide/gallium nitride heterostructure enabling high-performance phototransistors. <i>Photonics Research</i> , 2019 , 7, 311	6	19
169	Deuterogenic Plasmonic Vortices. <i>Nano Letters</i> , 2020 , 20, 6774-6779	11.5	19
168	Metasurfaces for bioelectronics and healthcare. <i>Nature Electronics</i> , 2021 , 4, 382-391	28.4	19

167	Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution. <i>ACS Photonics</i> , 2016 , 3, 1847-1853	6.3	19
166	3D Printed Meta-Helmet for Wide-Angle Thermal Camouflages. <i>Advanced Functional Materials</i> , 2020 , 30, 2002061	15.6	19
165	Nanoscale Lamb wave-driven motors in nonliquid environments. <i>Science Advances</i> , 2019 , 5, eaau8271	14.3	18
164	Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach. <i>IEEE Transactions on Antennas and Propagation</i> , 2011 , 59, 4364-4368	4.9	18
163	Point-Source Geometric Metasurface Holography. <i>Nano Letters</i> , 2021 , 21, 2332-2338	11.5	18
162	Cascade domino lithography for extreme photon squeezing. <i>Materials Today</i> , 2020 , 39, 89-97	21.8	18
161	A Continuously Tunable Solid-Like Convective Thermal Metadevice on the Reciprocal Line. <i>Advanced Materials</i> , 2020 , 32, e2003823	24	18
160	Robust Optical-Levitation-Based Metrology of Nanoparticle's Position and Mass. <i>Physical Review Letters</i> , 2020 , 124, 223603	7.4	17
159	Effective medium theory for thermal scattering off rotating structures. <i>Optics Express</i> , 2020 , 28, 25894-	·255 9 07	17
158	Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-optics. <i>Nano Letters</i> , 2020 , 20, 7811-7818	11.5	17
157	Shaping 3D Path of Electromagnetic Waves Using Gradient-Refractive-Index Metamaterials. <i>Advanced Science</i> , 2016 , 3, 1600022	13.6	17
156	Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials. <i>Applied Physics Letters</i> , 2018 , 113, 201103	3.4	17
155	Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy. <i>Nanotechnology</i> , 2017 , 28, 264001	3.4	16
154	Direct excitation of dark plasmonic resonances under visible light at normal incidence. <i>Nanoscale</i> , 2014 , 6, 2106-11	7.7	16
153	An Optically Controllable Transformation-dc Illusion Device. <i>Advanced Materials</i> , 2015 , 27, 4628-33	24	16
152	Chirality-assisted three-dimensional acoustic Floquet lattices. <i>Physical Review Research</i> , 2019 , 1,	3.9	16
151	Transmission R eflection-Selective Metasurface and Its Application to RCS Reduction of High-Gain Reflector Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 1426-1435	4.9	16
150	Observation of nonreciprocal magnetophonon effect in nonencapsulated few-layered CrI. <i>Science Advances</i> , 2020 , 6,	14.3	16

Smart Doppler Cloak Operating in Broad Band and Full Polarizations. Advanced Materials, 2021, 33, e2007266 16 149 Coupling effect of spiral-shaped terahertz metamaterials for tunable electromagnetic response. 148 2.6 15 Applied Physics A: Materials Science and Processing, 2014, 115, 25-29 Infrared Nanoimaging Reveals the Surface Metallic Plasmons in Topological Insulator. ACS 6.3 147 15 Photonics, 2017, 4, 3055-3062 Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width. Laser and 146 8.3 15 Photonics Reviews, 2015, 9, 674-681 Three-dimensional visible-light capsule enclosing perfect supersized darkness via antiresolution. 8.3 145 15 Laser and Photonics Reviews, 2014, 8, 743-749 Inverse design mechanism of cylindrical cloaks without knowledge of the required coordinate transformation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1.8 144 15 **2010**, 27, 1079-82 Extraordinary Multipole Modes and Ultra-Enhanced Optical Lateral Force by Chirality. Physical 143 7.4 15 Review Letters, 2020, 125, 043901 Rotation-Selective Moir[Magnification of Structural Color Pattern Arrays. ACS Nano, 2019, 13, 14138-141447 142 15 Optical Bound States in Continuum in MoS-Based Metasurface for Directional Light Emission. Nano 141 11.5 15 Letters, 2021, 21, 967-972 Acoustic cloaking by extraordinary sound transmission. Journal of Applied Physics, 2015, 117, 214507 140 2.5 14 Large enhancement of thermoelectric performance in MoS/-BN heterostructure due to vacancy-induced band hybridization. Proceedings of the National Academy of Sciences of the United 139 11.5 14 States of America, 2020, 117, 13929-13936 Fano Resonance in Artificial Photonic Molecules. Advanced Optical Materials, 2020, 8, 1902153 138 8.1 14 Reconfigurable symmetry-broken laser in a symmetric microcavity. Nature Communications, 2020, 137 17.4 14 11, 1136 Efficient and Tunable Photoinduced Honeycomb Lattice in an Atomic Ensemble. Laser and 136 8.3 14 Photonics Reviews, **2018**, 12, 1800050 Tracing optical force fields within graded-index media. New Journal of Physics, 2014, 16, 053035 135 2.9 14 Properties of Faraday chiral media: Green dyadics and negative refraction. Physical Review B, 2006, 134 3.3 14 74, Multidimensional nanoscopic chiroptics. Nature Reviews Physics, 23.6 133 14 Twistronics for photons: opinion. *Optical Materials Express*, **2021**, 11, 1377 2.6 132 14

131	Enhanced light-matter interactions at photonic magic-angle topological transitions. <i>Applied Physics Letters</i> , 2021 , 118, 211101	3.4	14
130	Evanescent vortex: Optical subwavelength spanner. <i>Applied Physics Letters</i> , 2016 , 109, 191107	3.4	14
129	Highly efficient plasmon excitation in graphene-Bi_2Te_3 heterostructure. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 1842	1.7	14
128	Structured Semiconductor Interfaces: Active Functionality on Light Manipulation. <i>Proceedings of the IEEE</i> , 2020 , 108, 772-794	14.3	14
127	Millikelvin-resolved ambient thermography. Science Advances, 2020, 6,	14.3	13
126	Photonic Nanojet Mediated Backaction of Dielectric Microparticles. <i>ACS Photonics</i> , 2020 , 7, 1483-1490	6.3	13
125	Kerker-Type Intensity-Gradient Force of Light. Laser and Photonics Reviews, 2020, 14, 1900265	8.3	13
124	Momentum-Topology-Induced Optical Pulling Force. <i>Physical Review Letters</i> , 2020 , 124, 143901	7.4	13
123	The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication. <i>Applied Physics Letters</i> , 2010 , 97, 124104	3.4	13
122	Time f requency imaging algorithm for high-speed spinning targets in two dimensions. <i>IET Radar, Sonar and Navigation</i> , 2010 , 4, 806	1.4	13
121	Creating Rigorous Open Cloaks. Journal of Electromagnetic Waves and Applications, 2010, 24, 1839-1847	7 1.3	13
120	Patterned resist on flat silver achieving saturated plasmonic colors with sub-20-nm spectral linewidth. <i>Materials Today</i> , 2020 , 35, 99-105	21.8	13
119	Single-Layer Aberration-Compensated Flat Lens for Robust Wide-Angle Imaging. <i>Laser and Photonics Reviews</i> , 2020 , 14, 2000017	8.3	12
118	Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source. <i>Physical Review A</i> , 2013 , 88,	2.6	12
117	Scattering properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials. <i>Radio Science</i> , 2007 , 42, n/a-n/a	1.4	12
116	On the constitutive relations of G-chiral media and the possibility to realize negative-index media. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 2534-2538	1.2	12
115	Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. <i>Nano Letters</i> , 2021 , 21, 8979-8986	11.5	12
114	Diffusive nonreciprocity and thermal diode. <i>Physical Review B</i> , 2021 , 103,	3.3	12

113	Robust Control of a Multifrequency Metamaterial Cloak Featuring Intrinsic Harmonic Selection. <i>Physical Review Applied</i> , 2018 , 10,	4.3	12
112	Interplay of Optical Force and Ray-Optic Behavior between Luneburg Lenses. <i>ACS Photonics</i> , 2015 , 2, 1384-1390	6.3	11
111	3D-Printed Curved Metasurface with Multifunctional Wavefronts. <i>Advanced Optical Materials</i> , 2020 , 8, 2000129	8.1	11
110	Photorealistic rendering of a graded negative-index metamaterial magnifier. <i>New Journal of Physics</i> , 2012 , 14, 033024	2.9	11
109	High-Order Exceptional Points in Diffusive Systems: Robust APT Symmetry 2 Against Perturbation and Phase Oscillation at APT Symmetry Breaking. <i>ES Energy & Environments</i> , 2019 ,	2.9	11
108	Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. <i>Physical Review Letters</i> , 2020 , 125, 187403	7.4	11
107	NON-HERMITIAN ELECTROMAGNETIC METASURFACES AT EXCEPTIONAL POINTS (INVITED REVIEW). <i>Progress in Electromagnetics Research</i> , 2021 , 171, 1-20	3.8	11
106	Ephase modulated monolayer supercritical lens. <i>Nature Communications</i> , 2021 , 12, 32	17.4	11
105	Focusing of Tandem Bistatic-Configuration Data With Range Migration Algorithm. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2011 , 8, 88-92	4.1	10
104	Fano resonance of three-dimensional spiral photonic crystals: Paradoxical transmission and polarization gap. <i>Applied Physics Letters</i> , 2011 , 98, 081116	3.4	10
103	Hybrid shaped ultra-wideband antenna. Microwave and Optical Technology Letters, 2007, 49, 2412-2415	1.2	10
102	Electromagnetic Scattering Properties in a Multilayered Metamaterial Cylinder. <i>IEICE Transactions on Communications</i> , 2007 , E90-B, 2423-2429	0.5	10
101	One-step green conversion of benzyl bromide to aldehydes on NaOH-modified g-C3N4 with dioxygen under LED visible light. <i>Catalysis Science and Technology</i> , 2019 , 9, 3270-3278	5.5	9
100	Foliar application of betaine improves water-deficit stress tolerance in barley (Hordeum vulgare L.). <i>Plant Growth Regulation</i> , 2019 , 89, 109-118	3.2	9
99	Monolayer Conveyor for Stably Trapping and Transporting Sub-1´nm Particles. <i>Laser and Photonics Reviews</i> , 2020 , 14, 2000030	8.3	9
98	Rigorous Derivation and Fast Solution of Spatial-Domain Green's Functions for Uniaxial Anisotropic Multilayers Using Modified Fast Hankel Transform Method. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2012 , 60, 205-217	4.1	9
97	Pulling cylindrical particles using a soft-nonparaxial tractor beam. Scientific Reports, 2017, 7, 652	4.9	9
96	Conjugate gradient method for phase retrieval based on the Wirtinger derivative. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2017 , 34, 708-712	1.8	9

95	GENERATION OF OPTICAL VORTEX BEAMS BY COMPACT STRUCTURES. <i>Journal of Molecular and Engineering Materials</i> , 2014 , 02, 1440013	1.3	9
94	On-chip trans-dimensional plasmonic router. <i>Nanophotonics</i> , 2020 , 9, 3357-3365	6.3	9
93	Arbitrary cylindrical vector beam generation enabled by polarization-selective Gouy phase shifter. <i>Photonics Research</i> , 2021 , 9, 1048	6	9
92	Localized surface plasmon resonance in graphene nanomesh with Au nanostructures. <i>Applied Physics Letters</i> , 2016 , 109, 041106	3.4	9
91	Schrdinger's red pixel by quasi-bound-states-in-the-continuum Science Advances, 2022, 8, eabm4512	14.3	9
90	A metasurface-based light-to-microwave transmitter for hybrid wireless communications <i>Light: Science and Applications</i> , 2022 , 11, 126	16.7	9
89	Loss-Assisted Metasurface at an Exceptional Point. ACS Photonics, 2020, 7, 3321-3327	6.3	8
88	Optofluidic Microengine in A Dynamic Flow Environment via Self-Induced Back-Action. <i>ACS Photonics</i> , 2020 , 7, 1500-1507	6.3	8
87	Two-Dimensional Spectrum Matched Filter Banks for High-Speed Spinning-Target Three-Dimensional ISAR Imaging. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2009 , 6, 368-372	4.1	8
86	Eigenfunctional representation of dyadic Green's functions in multilayered gyrotropic chiral media. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2007 , 40, 5751-5766	2	8
85	Robustly printable freeform thermal metamaterials. <i>Nature Communications</i> , 2021 , 12, 7228	17.4	8
84	High-resolution light field prints by nanoscale 3D printing. <i>Nature Communications</i> , 2021 , 12, 3728	17.4	8
83	Single-layer spatial analog meta-processor for imaging processing <i>Nature Communications</i> , 2022 , 13, 2188	17.4	8
82	Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	7
81	Physical mechanisms for tuning the nonlinear effects in photonic crystals. <i>Optics Express</i> , 2015 , 23, 198	8 5.9 0	7
80	Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. <i>Nano Letters</i> , 2020 , 20, 4645-4	1 652 5	7
79	Investigating the dynamics of excitons in monolayer WSe before and after organic super acid treatment. <i>Nanoscale</i> , 2018 , 10, 9346-9352	7.7	7
78	Intrinsically shaping the focal behavior with multi-ring Bessel-Gaussian beam. <i>Applied Physics Letters</i> , 2017 , 111, 031103	3.4	7

77	Mie series for electromagnetic scattering of chiral metamaterials sphere. <i>Journal of Systems Engineering and Electronics</i> , 2011 , 22, 885-891	1.3	7
76	Comment on Negative refractive index in gyrotropically magnetoelectric media (1) Physical Review B, 2007, 75,	3.3	7
75	Purity and efficiency of hybrid orbital angular momentum-generating metasurfaces. <i>Journal of Nanophotonics</i> , 2020 , 14, 1	1.1	7
74	Reconfiguring Colors of Single Relief Structures by Directional Stretching. <i>Advanced Materials</i> , 2021 , e2108128	24	7
73	Optical Fireworks Based on Multifocal Three-Dimensional Color Prints. ACS Nano, 2021, 15, 10185-1019	93 16.7	7
72	Plasmonic nanoparticle-film-assisted photoelectrochemical catalysis across the entire visible-NIR region. <i>Nanoscale</i> , 2019 , 11, 23058-23064	7.7	7
71	Infrared metasurface-enabled compact polarization nanodevices. <i>Materials Today</i> , 2021 , 50, 499-499	21.8	7
70	Configurable Phase Transitions in a Topological Thermal Material. <i>Physical Review Letters</i> , 2021 , 127, 105901	7.4	7
69	Electromagnetic metasurfaces: from concept to applications. <i>Science Bulletin</i> , 2019 , 64, 791-792	10.6	6
68	Electromagnetic Scattering by a Gyrotropic-Coated Conducting Sphere Illuminated From Arbitrary Spatial Angles. <i>IEEE Transactions on Antennas and Propagation</i> , 2013 , 61, 3381-3386	4.9	6
67	Experimental research of unsupervised Cameron/maximum-likelihood classification method for fully polarimetric synthetic aperture radar data. <i>IET Radar, Sonar and Navigation</i> , 2010 , 4, 85	1.4	6
66	Evolution and Nonreciprocity of Loss-Induced Topological Phase Singularity Pairs <i>Physical Review Letters</i> , 2021 , 127, 266101	7.4	6
65	Phase and Polarization Modulations Using Radiation-Type Metasurfaces. <i>Advanced Optical Materials</i> , 2021 , 9, 2100159	8.1	6
64	Efficient and Tunable Reflection of Phonon Polaritons at Built-In Intercalation Interfaces. <i>Advanced Materials</i> , 2021 , 33, e2008070	24	6
63	Path-Dependent Thermal Metadevice beyond Janus Functionalities. <i>Advanced Materials</i> , 2021 , 33, e200)30β4	6
62	Many-particle induced band renormalization processes in few- and mono-layer MoS. <i>Nanotechnology</i> , 2021 , 32, 135208	3.4	6
61	Can Weak Chirality Induce Strong Coupling between Resonant States?. <i>Physical Review Letters</i> , 2022 , 128, 146102	7.4	6
60	Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals <i>Nano Letters</i> , 2022 ,	11.5	6

59	Field-programmable silicon temporal cloak. <i>Nature Communications</i> , 2019 , 10, 2726	17.4	5
58	2016,		5
57	Switchable self-defocusing and focusing in nearly isotropic photonic crystals via enhanced inverse diffraction. <i>Physical Review A</i> , 2015 , 91,	2.6	5
56	Macroscopic broadband optical escalator with force-loaded transformation optics. <i>Optics Express</i> , 2013 , 21, 796-803	3.3	5
55	Gain-assisted transformation optics. <i>Optics Express</i> , 2011 , 19, 8610-5	3.3	5
54	Diffusive topological transport in spatiotemporal thermal lattices. <i>Nature Physics</i> ,	16.2	5
53	Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking. <i>Advanced Photonics</i> , 2019 , 1, 1	8.1	5
52	Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging. <i>Optics Letters</i> , 2018 , 43, 5615-5618	3	5
51	Nonlinearity-induced nanoparticle circumgyration at sub-diffraction scale. <i>Nature Communications</i> , 2021 , 12, 3722	17.4	5
50	Chiral plasmonics and enhanced chiral light-matter interactions. <i>Science China: Physics, Mechanics and Astronomy</i> , 2020 , 63, 1	3.6	5
49	Analysis of mid-infrared lasing in active random media. <i>Optics Express</i> , 2015 , 23, 12286-92	3.3	4
48	Light-programmable manipulation of DC field in Laplacian Meta-devices. <i>Scientific Reports</i> , 2018 , 8, 127	20,8 .9	4
47	Phase-preserved optical elevator. <i>Optics Express</i> , 2013 , 21, 6650-7	3.3	4
46	Full-wave analysis of extraordinary backscattering by a layered plasmonic nanosphere. <i>Journal of Applied Physics</i> , 2008 , 104, 034909	2.5	4
45	Reciprocity of thermal diffusion in time-modulated systems <i>Nature Communications</i> , 2022 , 13, 167	17.4	4
44	Dynamically tunable infrared grating based on graphene-enabled phase switching of a split ring resonator [Invited]. <i>Optical Materials Express</i> , 2019 , 9, 56	2.6	4
43	Near-Omnidirectional Broadband Metamaterial Absorber for TM-Polarized Wave Based on Radiation Pattern Synthesis. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 1-1	4.9	4
42	Chip-Scale Plasmonic Sum Frequency Generation. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-8	1.8	3

(2021-2019)

41	Spectrum Manipulation for Sound with Effective Gauge Fields in Cascading Temporally Modulated Waveguides. <i>Physical Review Applied</i> , 2019 , 11,	4.3	3
40	Cloaking the magnons. <i>Physical Review B</i> , 2016 , 93,	3.3	3
39	Metaoptronic Multiplexed Interface for Probing Bioentity Behaviors. Nano Letters, 2021, 21, 2681-2689	11.5	3
38	Digital Metasurfaces: Light-Controllable Digital Coding Metasurfaces (Adv. Sci. 11/2018). <i>Advanced Science</i> , 2018 , 5, 1870068	13.6	3
37	A reprogrammable multifunctional chalcogenide guided-wave lens. <i>Nanoscale</i> , 2018 , 10, 17053-17059	7.7	3
36	Diffusive Fizeau Drag in Spatiotemporal Thermal Metamaterials <i>Physical Review Letters</i> , 2022 , 128, 145	5 9 Q1	3
35	Highly radiative symmetric plasmonic leaky wave antenna 2017,		2
34	Design and modeling of low-loss symmetric slow-wave transmission lines 2015,		2
33	Guide-wave Photonic Pulling Force Using One-way Photonic Chiral Edge States 2015,		2
32	FINITE-BOUNDARY BOWTIE APERTURE ANTENNA FOR TRAPPING NANOPARTICLES. <i>Progress in Electromagnetics Research</i> , 2013 , 136, 17-27	3.8	2
31	Micro-motion feature extraction of target in inverse synthetic aperture radar imaging with sparse aperture. <i>Journal of Electromagnetic Waves and Applications</i> , 2013 , 27, 1841-1849	1.3	2
30	Miniaturized on-chip passive devices based on self-rolled-up SiNx nanomembrane inductive tube 2013 ,		2
29	Exploiting design freedom in biaxial dielectrics to enable spatially overlapping optical instruments. <i>Scientific Reports</i> , 2013 , 3, 2055	4.9	2
28	SAR imaging and Doppler ambiguity removal with distributed microsatellite arrays. <i>International Journal of Remote Sensing</i> , 2010 , 31, 6441-6458	3.1	2
27	Focus on 2D material nanophotonics. <i>Nanotechnology</i> , 2019 , 30, 030201	3.4	2
26	What limits limits?. <i>National Science Review</i> , 2021 , 8, nwaa210	10.8	2
25	Wireless Magnetic Actuation with a Bistable Parity-Time-Symmetric Circuit. <i>Physical Review Applied</i> , 2021 , 15,	4.3	2
24	Observation of Anisotropic Magnetoresistance in Layered Nonmagnetic Semiconducting PdSe. <i>ACS Applied Materials & District Materials & </i>	9.5	2

23	Passive ultra-conductive thermal metamaterials Advanced Materials, 2022, e2200329	24	2
22	Real-time Self-adaptive Thermal Metasurface Advanced Materials, 2022, e2201093	24	2
21	Heat transfer control using a thermal analogue of coherent perfect absorption <i>Nature Communications</i> , 2022 , 13, 2683	17.4	2
20	Scattering characteristics from conducting cylinder with reconstructing electromagnetic cloaking layers 2009 ,		1
19	. IEEE Transactions on Antennas and Propagation, 2007 , 55, 240-244	4.9	1
18	Creating Rigorous Open Cloaks		1
17	Dynamics of Topological Polarization Singularity in Momentum Space. <i>Physical Review Letters</i> , 2021 , 127, 176101	7.4	1
16	Coexistence of Photoelectric Conversion and Storage in van der Waals Heterojunctions. <i>Physical Review Letters</i> , 2021 , 127, 217401	7.4	1
15	Zero chiral bulk modes in 3D Weyl metamaterials. Science Bulletin, 2019, 64, 799-801	10.6	1
14	A phase-to-intensity strategy of angular velocity measurement based on photonic orbital angular momentum. <i>Nanophotonics</i> , 2021 ,	6.3	1
13	Observation of Weyl exceptional rings in thermal diffusion <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2110018119	11.5	1
12	Three-dimensional ultrasound subwavelength arbitrary focusing with broadband sparse metalens. <i>Science China: Physics, Mechanics and Astronomy</i> , 2022 , 65, 1	3.6	1
11	Regulated Photon Transport in Chaotic Microcavities by Tailoring Phase Space <i>Physical Review Letters</i> , 2021 , 127, 273902	7.4	1
10	Programmable Controlling of Multiple Spatial Harmonics via a Nonlinearly-Phased Grating Metasurface. <i>Advanced Functional Materials</i> ,2203120	15.6	1
9	A Modular Design of Continuously Tunable Full Color Plasmonic Pixels with Broken Rotational Symmetry. <i>Advanced Functional Materials</i> ,2108437	15.6	О
8	Reply to: Reconsidering metasurface lasers. <i>Nature Photonics</i> , 2021 , 15, 339-340	33.9	O
7	Azimuth preprocessing for monostatic and bistatic spotlight synthetic aperture radar maging based on spectral analysis convolution. <i>Journal of Applied Remote Sensing</i> , 2009 , 3, 033565	1.4	
6	Sensitivity analysis of iterative adjoint technique for microstrip circuits optimization. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 607-609	1.2	

LIST OF PUBLICATIONS

5 Generation of Optical Vortex Beams **2021**, 223-244

4	. URSI Radio Science Bulletin, 2020 , 2020, 54-62	0.1
3	Editorial on special issue Metamaterials and Plasmonics in Asia (Nanophotonics, 2020, 9, 3045-3047)	6.3
2	Ultrathin Metalens and Three-Dimensional Optical Holography Using Metasurfaces 2017 , 91-126	
1	Breaking the symmetry of polarizers. <i>Journal of Semiconductors</i> , 2022 , 43, 050401	2.3