
Masao Gen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555651/publications.pdf Version: 2024-02-01

MASAO GEN

#	Article	IF	CITATIONS
1	Particulate nitrate photolysis in the atmosphere. Environmental Science Atmospheres, 2022, 2, 111-127.	2.4	29
2	Photochemical Reactions of Glyoxal during Particulate Ammonium Nitrate Photolysis: Brown Carbon Formation, Enhanced Glyoxal Decay, and Organic Phase Formation. Environmental Science & Technology, 2022, 56, 1605-1614.	10.0	29
3	Decay Kinetics and Absorption Changes of Methoxyphenols and Nitrophenols during Nitrate-Mediated Aqueous Photochemical Oxidation at 254 and 313 nm. ACS Earth and Space Chemistry, 2022, 6, 1115-1125.	2.7	6
4	Development of spray-drying-based surface-enhanced Raman spectroscopy. Scientific Reports, 2022, 12, 4511.	3.3	4
5	Single-particle Raman spectroscopy for studying physical and chemical processes of atmospheric particles. Atmospheric Chemistry and Physics, 2022, 22, 3017-3044.	4.9	16
6	Filtration of aerosol particles by parallel and staggered filter arrays. Aerosol Science and Technology, 2022, 56, 767-774.	3.1	0
7	Single particle diversity and mixing state of carbonaceous aerosols in Guangzhou, China. Science of the Total Environment, 2021, 754, 142182.	8.0	14
8	Concluding remarks: <i>Faraday Discussion</i> on air quality in megacities. Faraday Discussions, 2021, 226, 617-628.	3.2	2
9	Production of Formate via Oxidation of Glyoxal Promoted by Particulate Nitrate Photolysis. Environmental Science & Technology, 2021, 55, 5711-5720.	10.0	23
10	Nitrate Photolysis in Mixed Sucrose–Nitrate–Sulfate Particles at Different Relative Humidities. Journal of Physical Chemistry A, 2021, 125, 3739-3747.	2.5	14
11	General discussion: Urban air quality; Meteorological influences and air quality trends. Faraday Discussions, 2021, 226, 191-206.	3.2	0
12	Nitrite/Nitrous Acid Generation from the Reaction of Nitrate and Fe(II) Promoted by Photolysis of Iron–Organic Complexes. Environmental Science & Technology, 2021, 55, 15715-15723.	10.0	18
13	Enhanced Nitrite Production from the Aqueous Photolysis of Nitrate in the Presence of Vanillic Acid and Implications for the Roles of Light-Absorbing Organics. Environmental Science & Technology, 2021, 55, 15694-15704.	10.0	25
14	Reconciling Measurement and Prediction of Free and Solvated Water in Solution. ACS Omega, 2020, 5, 8754-8765.	3.5	8
15	Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production. Environmental Science & Technology, 2020, 54, 9862-9871.	10.0	17
16	Relative Humidity History Affects Hygroscopicity of Mixed Particles of Glyoxal and Reduced Nitrogenous Species. Environmental Science & Technology, 2020, 54, 7097-7106.	10.0	10
17	Enhanced Sulfate Production by Nitrate Photolysis in the Presence of Halide Ions in Atmospheric Particles. Environmental Science & Technology, 2020, 54, 3831-3839.	10.0	41
18	Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science and Technology Letters, 2020, 7, 632-638.	8.7	43

Masao Gen

#	Article	IF	CITATIONS
19	Application of SERS on the chemical speciation of individual Aitken mode particles after condensational growth. Aerosol Science and Technology, 2020, 54, 826-836.	3.1	3
20	Deposition of ultrasonic nebulized aerosols onto a hydrophilic surface. Malaysian Journal of Fundamental and Applied Sciences, 2020, 16, 258-263.	0.8	0
21	Dynamics of lubricious, concentrated PMMA brush layers studied by surface forces and resonance shear measurements. Soft Matter, 2019, 15, 7765-7776.	2.7	5
22	Heterogeneous Oxidation of SO ₂ in Sulfate Production during Nitrate Photolysis at 300 nm: Effect of pH, Relative Humidity, Irradiation Intensity, and the Presence of Organic Compounds. Environmental Science & Technology, 2019, 53, 8757-8766.	10.0	76
23	Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for studying organic coatings of atmospheric aerosol particles. Aerosol Science and Technology, 2019, 53, 760-770.	3.1	13
24	Effect of Ozone Concentration and Relative Humidity on the Heterogeneous Oxidation of Linoleic Acid Particles by Ozone: An Insight into the Interchangeability of Ozone Concentration and Time. ACS Earth and Space Chemistry, 2019, 3, 779-788.	2.7	19
25	Reactive Uptake of Glyoxal by Methylaminium-Containing Salts as a Function of Relative Humidity. ACS Earth and Space Chemistry, 2019, 3, 150-157.	2.7	17
26	Heterogeneous SO ₂ Oxidation in Sulfate Formation by Photolysis of Particulate Nitrate. Environmental Science and Technology Letters, 2019, 6, 86-91.	8.7	116
27	Reactive Uptake of Glyoxal by Ammonium-Containing Salt Particles as a Function of Relative Humidity. Environmental Science & Technology, 2018, 52, 6903-6911.	10.0	45
28	Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles. Atmospheric Chemistry and Physics, 2017, 17, 14025-14037.	4.9	27
29	Preparation and Characterisation of Cyclodextrin Glucanotransferase Enzyme Immobilised in Electrospun Nanofibrous Membrane. Journal of Fiber Science and Technology, 2017, 73, 251-260.	0.4	8
30	Immobilisation of cyclodextrin glucanotransferase into polyvinyl alcohol (PVA) nanofibres via electrospinning. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 44-48.	4.4	43
31	Probing a dip-coated layer of organic molecules by an aerosol nanoparticle sensor with sub-100 nm resolution based on surface-enhanced Raman scattering. RSC Advances, 2015, 5, 5158-5163.	3.6	6
32	Preliminary Study on the Measurement of the Electrostatic Charging State of PM2.5 Collected on Filter Media. Asian Journal of Atmospheric Environment, 2015, 9, 137-145.	1.1	8
33	Area-selective deposition of charged particles derived from colloidal aerosol droplets on a surface with different hydrophilic levels. Journal of Aerosol Science, 2014, 78, 83-96.	3.8	6
34	Transformation of cyclodextrin glucanotransferase (CGTase) from aqueous suspension to fine solid particles via electrospraying. Enzyme and Microbial Technology, 2014, 64-65, 52-59.	3.2	9
35	Insertion of Presynthesized Particles in the Pores of a Honeycomb Structure by an Aerosol Process. Journal of the Society of Powder Technology, Japan, 2014, 51, 759-764.	0.1	0
36	Simultaneous Deposition of Submicron Aerosols onto Both Surfaces of a Plate Substrate by Electrostatic Forces. E-Journal of Surface Science and Nanotechnology, 2014, 12, 238-241.	0.4	8

#	Article	IF	CITATIONS
37	A Colloidal Route to Detection of Organic Molecules Based on Surface-Enhanced Raman Spectroscopy Using Nanostructured Substrate Derived from Aerosols. Japanese Journal of Applied Physics, 2011, 50, 06GG10.	1.5	0
38	A Colloidal Route to Detection of Organic Molecules Based on Surface-Enhanced Raman Spectroscopy Using Nanostructured Substrate Derived from Aerosols. Japanese Journal of Applied Physics, 2011, 50, 06GG10.	1.5	3