
Bhavik Bakshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5556366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiscale PCA with application to multivariate statistical process monitoring. AICHE Journal, 1998, 44, 1596-1610.	3.6	738
2	Promise and problems of emergy analysis. Ecological Modelling, 2004, 178, 215-225.	2.5	282
3	Exergy: Its Potential and Limitations in Environmental Science and Technology. Environmental Science & Technology, 2008, 42, 2221-2232.	10.0	270
4	Particle filtering and moving horizon estimation. Computers and Chemical Engineering, 2006, 30, 1529-1541.	3.8	260
5	Wave-net: a multiresolution, hierarchical neural network with localized learning. AICHE Journal, 1993, 39, 57-81.	3.6	230
6	The quest for sustainability: Challenges for process systems engineering. AICHE Journal, 2003, 49, 1350-1358.	3.6	199
7	Accounting for Ecosystem Services in Life Cycle Assessment, Part II: Toward an Ecologically Based LCA. Environmental Science & Technology, 2010, 44, 2624-2631.	10.0	189
8	Accounting for Ecosystem Services in Life Cycle Assessment, Part I: A Critical Review. Environmental Science & Technology, 2010, 44, 2232-2242.	10.0	180
9	Expanding Exergy Analysis to Account for Ecosystem Products and Services. Environmental Science & Technology, 2004, 38, 3768-3777.	10.0	174
10	Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Computers and Chemical Engineering, 2002, 26, 161-174.	3.8	173
11	Multiscale analysis and modeling using wavelets. Journal of Chemometrics, 1999, 13, 415-434.	1.3	162
12	Life Cycle Assessment of an Ionic Liquid versus Molecular Solvents and Their Applications. Environmental Science & Technology, 2008, 42, 1724-1730.	10.0	155
13	Carbon Nanofiber Production. Journal of Industrial Ecology, 2008, 12, 394-410.	5.5	137
14	Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model. Energy, 2007, 32, 1560-1592.	8.8	135
15	An urban systems framework to assess the trans-boundary food-energy-water nexus: implementation in Delhi, India. Environmental Research Letters, 2017, 12, 025008.	5.2	121
16	Representation of process trends—III. Multiscale extraction of trends from process data. Computers and Chemical Engineering, 1994, 18, 267-302.	3.8	110
17	Techno-Ecological Synergy: A Framework for Sustainable Engineering. Environmental Science & Technology, 2015, 49, 1752-1760.	10.0	110
18	Thermodynamic Accounting of Ecosystem Contribution to Economic Sectors with Application to 1992 U.S. Economy. Environmental Science & Technology, 2004, 38, 4810-4827.	10.0	105

#	Article	IF	CITATIONS
19	Carbon Nanofiber Polymer Composites: Evaluation of Life Cycle Energy Use. Environmental Science & Technology, 2009, 43, 2078-2084.	10.0	105
20	On-line multiscale filtering of random and gross errors without process models. AICHE Journal, 1999, 45, 1041-1058.	3.6	100
21	A thermodynamic framework for ecologically conscious process systems engineering. Computers and Chemical Engineering, 2002, 26, 269-282.	3.8	99
22	Bayesian estimation via sequential Monte Carlo sampling—Constrained dynamic systems. Automatica, 2007, 43, 1615-1622.	5.0	95
23	Representation of process trends—IV. Induction of real-time patterns from operating data for diagnosis and supervisory control. Computers and Chemical Engineering, 1994, 18, 303-332.	3.8	93
24	A thermodynamic framework for ecologically conscious process systems engineering. Computers and Chemical Engineering, 2000, 24, 1767-1773.	3.8	90
25	Comparative life cycle assessment of beneficial applications for scrap tires. Clean Technologies and Environmental Policy, 2011, 13, 19-35.	4.1	90
26	Multiscale SPC using wavelets: Theoretical analysis and properties. AICHE Journal, 2003, 49, 939-958.	3.6	81
27	Comparison of statistical process monitoring methods: application to the Eastman challenge problem. Computers and Chemical Engineering, 2000, 24, 175-181.	3.8	72
28	Towards integrating the ecosystem services cascade framework within the Life Cycle Assessment (LCA) cause-effect methodology. Science of the Total Environment, 2019, 690, 1284-1298.	8.0	70
29	Bayesian Estimation via Sequential Monte Carlo Sampling:Â Unconstrained Nonlinear Dynamic Systems. Industrial & Engineering Chemistry Research, 2004, 43, 4012-4025.	3.7	69
30	1,3-Propanediol from Fossils versus Biomass: A Life Cycle Evaluation of Emissions and Ecological Resources. Industrial & Engineering Chemistry Research, 2009, 48, 8068-8082.	3.7	69
31	Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number. Journal of Alloys and Compounds, 2001, 317-318, 26-38.	5.5	68
32	Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol. Ecological Modelling, 2010, 221, 1807-1818.	2.5	65
33	Thermodynamic Metrics for Aggregation of Natural Resources in Life Cycle Analysis: Insight via Application to Some Transportation Fuels. Environmental Science & Technology, 2010, 44, 800-807.	10.0	61
34	Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input–output approach. Energy Policy, 2010, 38, 3527-3536.	8.8	55
35	Life Cycle of Titanium Dioxide Nanoparticle Production. Journal of Industrial Ecology, 2011, 15, 81-95.	5.5	54
36	Bayesian principal component analysis. Journal of Chemometrics, 2002, 16, 576-595.	1.3	49

#	Article	IF	CITATIONS
37	Flow of Natural versus Economic Capital in Industrial Supply Networks and Its Implications to Sustainability. Environmental Science & Technology, 2005, 39, 9759-9769.	10.0	49
38	A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies. Applied Energy, 2016, 184, 830-839.	10.1	49
39	Including nature in the food-energy-water nexus can improve sustainability across multiple ecosystem services. Resources, Conservation and Recycling, 2018, 137, 214-228.	10.8	48
40	Compression of chemical process data by functional approximation and feature extraction. AICHE Journal, 1996, 42, 477-492.	3.6	45
41	Assessing Resource Intensity and Renewability of Cellulosic Ethanol Technologies Using Eco-LCA. Environmental Science & Technology, 2012, 46, 2436-2444.	10.0	45
42	Multiscale statistical process control using wavelet packets. AICHE Journal, 2008, 54, 2366-2378.	3.6	42
43	Reusable vs. disposable cups revisited: guidance in life cycle comparisons addressing scenario, model, and parameter uncertainties for the US consumer. International Journal of Life Cycle Assessment, 2014, 19, 931-940.	4.7	42
44	Process to planet: A multiscale modeling framework toward sustainable engineering. AICHE Journal, 2015, 61, 3332-3352.	3.6	40
45	Life cycle and emergy based design of energy systems in developing countries: Centralized and localized options. Ecological Modelling, 2015, 305, 40-53.	2.5	40
46	Economic Dependence of U.S. Industrial Sectors on Animal-Mediated Pollination Service. Environmental Science & Technology, 2015, 49, 14441-14451.	10.0	38
47	Toward Sustainable Chemical Engineering: The Role of Process Systems Engineering. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 265-288.	6.8	37
48	Analysis of operating data for evaluation, diagnosis and control of batch operations. Journal of Process Control, 1994, 4, 179-194.	3.3	36
49	Hierarchical thermodynamic metrics for evaluating the environmental sustainability of industrial processes. Environmental Progress, 2004, 23, 302-314.	0.7	36
50	Claiming Sustainability: Requirements and Challenges. ACS Sustainable Chemistry and Engineering, 2018, 6, 3632-3639.	6.7	36
51	Ecosystem Services in Life Cycle Assessment while Encouraging Technoâ€Ecological Synergies. Journal of Industrial Ecology, 2019, 23, 347-360.	5.5	35
52	Assessing the capacity of local ecosystems to meet industrial demand for ecosystem services. AICHE Journal, 2016, 62, 3319-3333.	3.6	34
53	Methods and tools for sustainable process design. Current Opinion in Chemical Engineering, 2014, 6, 69-74.	7.8	33
54	Ecosystem services in life cycle assessment - Part 1: A computational framework. Journal of Cleaner Production, 2018, 197, 314-322.	9.3	31

#	Article	IF	CITATIONS
55	Accounting for the Biogeochemical Cycle of Nitrogen in Input-Output Life Cycle Assessment. Environmental Science & Technology, 2013, 47, 9388-9396.	10.0	30
56	Toward sustainable circular economies: A computational framework for assessment and design. Journal of Cleaner Production, 2021, 295, 126353.	9.3	30
57	Synergies and trade-offs in renewable energy landscapes: Balancing energy production with economics and ecosystem services. Applied Energy, 2017, 199, 25-44.	10.1	29
58	A life cycle framework for the investigation of environmentally benign nanoparticles and products. Physica Status Solidi - Rapid Research Letters, 2011, 5, 312-317.	2.4	28
59	Techno-Ecological Synergy as a Path Toward Sustainability of a North American Residential System. Environmental Science & Technology, 2013, 47, 1985-1993.	10.0	28
60	Sustainable process design by the process to planet framework. AICHE Journal, 2015, 61, 3320-3331.	3.6	28
61	Sustainable product design: A life-cycle approach. Chemical Engineering Science, 2020, 217, 115508.	3.8	27
62	Process modeling by Bayesian latent variable regression. AICHE Journal, 2002, 48, 1775-1793.	3.6	26
63	A Water-Withdrawal Input–Output Model of the Indian Economy. Environmental Science & Technology, 2016, 50, 1313-1321.	10.0	26
64	Nature-Based Solutions Can Compete with Technology for Mitigating Air Emissions Across the United States. Environmental Science & Technology, 2019, 53, 13228-13237.	10.0	24
65	Quantification and valuation of ecosystem services in life cycle assessment: Application of the cascade framework to rice farming systems. Science of the Total Environment, 2020, 747, 141278.	8.0	24
66	Clustering in wavelet domain: A multiresolution ART network for anomaly detection. AICHE Journal, 2004, 50, 2455-2466.	3.6	23
67	Allocation Games: Addressing the Ill-Posed Nature of Allocation in Life-Cycle Inventories. Environmental Science & Technology, 2015, 49, 7996-8003.	10.0	23
68	Designing biofuel supply chains while mitigating harmful algal blooms with treatment wetlands. Computers and Chemical Engineering, 2019, 126, 113-127.	3.8	23
69	A common framework for the unification of neural, chemometric and statistical modeling methods. Analytica Chimica Acta, 1999, 384, 227-247.	5.4	22
70	Enhancing Life ycle Inventories via Reconciliation with the Laws of Thermodynamics. Journal of Industrial Ecology, 2007, 11, 5-25.	5.5	22
71	Air quality and human health impacts of grasslands and shrublands in the United States. Atmospheric Environment, 2018, 182, 193-199.	4.1	22
72	Ecosystem services in life cycle assessment - Part 2: Adaptations to regional and serviceshed information. Journal of Cleaner Production, 2018, 197, 772-780.	9.3	22

#	Article	IF	CITATIONS
73	Process Systems Engineering Perspective on the Design of Materials and Molecules. Industrial & Engineering Chemistry Research, 2021, 60, 5194-5206.	3.7	22
74	Toward Bayesian chemometrics—A tutorial on some recent advances. Analytica Chimica Acta, 2007, 602, 1-16.	5.4	21
75	Towards sustainability of engineered processes: Designing self-reliant networks of technological–ecological systems. Computers and Chemical Engineering, 2010, 34, 1413-1420.	3.8	21
76	Appreciating the Role of Thermodynamics in LCA Improvement Analysis via an Application to Titanium Dioxide Nanoparticles. Environmental Science & amp; Technology, 2011, 45, 3054-3061.	10.0	21
77	The path to a sustainable chemical industry: progress and problems. Current Opinion in Chemical Engineering, 2011, 1, 64-68.	7.8	21
78	Ecosystems as unit operations for local technoâ€ecological synergy: Integrated process design with treatment wetlands. AICHE Journal, 2018, 64, 2390-2407.	3.6	21
79	Incorporating Ecosystem Services Into Life Cycle Assessment. Journal of Industrial Ecology, 2011, 15, 477-478.	5.5	20
80	Synergies between industry and nature – An emergy evaluation of a biodiesel production system integrated with ecological systems. Ecosystem Services, 2018, 30, 257-266.	5.4	20
81	Connecting air quality regulating ecosystem services with beneficiaries through quantitative serviceshed analysis. Ecosystem Services, 2020, 41, 101057.	5.4	20
82	Resource intensities of chemical industry sectors in the United States via input–output network models. Computers and Chemical Engineering, 2008, 32, 2050-2064.	3.8	19
83	Multiscale Methods for Denoising and Compression. Data Handling in Science and Technology, 2000, 22, 119-150.	3.1	18
84	Bury, burn, or gasify: assessing municipal solid waste management options in Indian megacities by exergy analysis. Clean Technologies and Environmental Policy, 2017, 19, 1403-1412.	4.1	18
85	A perspective on the role of uncertainty in sustainability science and engineering. Resources, Conservation and Recycling, 2021, 164, 105140.	10.8	18
86	Unification of neural and statistical modeling methods that combine inputs by linear projection. Computers and Chemical Engineering, 1998, 22, 1859-1878.	3.8	17
87	Interplay of large materials databases, semi-empirical methods, neuro-computing and first principle calculations for ternary compound former/nonformer prediction. Engineering Applications of Artificial Intelligence, 2000, 13, 497-505.	8.1	17
88	Life Cycle Energy Analysis and Environmental Life Cycle Assessment of Carbon Nanofibers Production. , 2007, , .		17
89	Accounting for Emissions and Sinks from the Biogeochemical Cycle of Carbon in the U.S. Economic Inputâ€Output Model. Journal of Industrial Ecology, 2014, 18, 818-828.	5.5	17
90	Multiscale Bayesian Rectification of Data from Linear Steady-State and Dynamic Systems without Accurate Models. Industrial & Engineering Chemistry Research, 2001, 40, 261-274.	3.7	16

#	Article	IF	CITATIONS
91	Reinforced Wind Turbine Blades - An Environmental Life Cycle Evaluation. Environmental Science & Technology, 2012, 46, 9785-9792.	10.0	16
92	Reasoning in Time: Modeling, Analysis, and Pattern Recognition of Temporal Process Trends. Advances in Chemical Engineering, 1995, , 485-548.	0.9	16
93	Multiscale rectification of random errors without fundamental process models. Computers and Chemical Engineering, 1997, 21, S1167-S1172.	3.8	15
94	A multiscale, Bayesian and error-in-variables approach for linear dynamic data rectification. Computers and Chemical Engineering, 2000, 24, 445-451.	3.8	15
95	Ethanol from Indian agro-industrial lignocellulosic biomass: an emergy evaluation. Clean Technologies and Environmental Policy, 2016, 18, 2625-2634.	4.1	15
96	Comparative life cycle assessment: Reinforcing wind turbine blades with carbon nanofibers. , 2010, , .		14
97	Multiâ€scale modeling for sustainable chemical production. Biotechnology Journal, 2013, 8, 973-984.	3.5	14
98	Preliminary thoughts on the application of thermodynamics to the development of sustainability criteria. , 2009, , .		13
99	Footprints of carbon and nitrogen: Revisiting the paradigm and exploring their nexus for decision making. Ecological Indicators, 2015, 53, 49-60.	6.3	13
100	Process to Planet Approach to Sustainable Process Design: Multiple Objectives and Byproducts. Theoretical Foundations of Chemical Engineering, 2017, 51, 936-948.	0.7	13
101	Assessing life cycle environmental implications of polymer nanocomposites. , 2008, , .		12
102	The carbon-nitrogen nexus of transportation fuels. Journal of Cleaner Production, 2018, 180, 790-803.	9.3	12
103	Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: Front subframe case study. Sustainable Materials and Technologies, 2021, 28, e00263.	3.3	12
104	Unification of neural and statistical methods as applied to materials structure-property mapping. Journal of Alloys and Compounds, 1998, 279, 39-46.	5.5	11
105	Bayesian latent variable regression via Gibbs sampling: methodology and practical aspects. Journal of Chemometrics, 2007, 21, 578-591.	1.3	11
106	Modeling the risks to complex industrial networks due to loss of natural capital. , 2009, , .		11
107	Toward multiscale consequential sustainable process design: Including the effects of economy and resource constraints with application to green urea production in a watershed. Chemical Engineering Science, 2019, 207, 725-743.	3.8	11
108	Techno-ecologically synergistic food–energy–water systems can meet human and ecosystem needs. Energy and Environmental Science, 2021, 14, 3700-3716.	30.8	11

#	Article	IF	CITATIONS
109	Rectification of multiscale data with application to life cycle inventories. AICHE Journal, 2007, 53, 876-890.	3.6	10
110	Thermodynamic Analysis of Resources Used in Manufacturing Processes. , 2011, , 163-189.		10
111	Toward Sustainable Metal–Organic Frameworks for Post-Combustion Carbon Capture by Life Cycle Assessment and Molecular Simulation. ACS Sustainable Chemistry and Engineering, 2021, 9, 12132-12141.	6.7	10
112	Metrics for a nature-positive world: A multiscale approach for absolute environmental sustainability assessment. Science of the Total Environment, 2022, 846, 157373.	8.0	10
113	Biosolids management with net-zero CO2 emissions: a techno-ecological synergy design. Clean Technologies and Environmental Policy, 2017, 19, 2099-2111.	4.1	9
114	Including Ecosystem Services in Life Cycle Assessment: Methodology and Application to Urban Farms. Procedia CIRP, 2019, 80, 287-291.	1.9	9
115	Role of Vegetation in Mitigating Air Emissions Across Industrial Sites in the US. ACS Sustainable Chemistry and Engineering, 2019, 7, 3783-3791.	6.7	9
116	Integrating life-cycle assessment and choice analysis for alternative fuel valuation. Ecological Economics, 2014, 102, 83-93.	5.7	8
117	Empirical Comparison of Inputâ€Output Methods for Life Cycle Assessment. Journal of Industrial Ecology, 2014, 18, 734-746.	5.5	8
118	Designing Value Chains of Plastic and Paper Carrier Bags for a Sustainable and Circular Economy. ACS Sustainable Chemistry and Engineering, 2021, 9, 16687-16698.	6.7	8
119	Accounting for nature's intermittency and growth while mitigating NO 2 emissions by technoecological synergistic design—Application to a chloralkali process. Journal of Advanced Manufacturing and Processing, 2019, 1, .	2.4	7
120	Integrated estimation of measurement error with empirical process modeling—A hierarchical Bayes approach. AICHE Journal, 2009, 55, 2883-2895.	3.6	6
121	Allocation in life cycle inventory: partial set of solutions to an ill-posed problem. International Journal of Life Cycle Assessment, 2014, 19, 1854-1865.	4.7	6
122	Life Cycle Comparison of Coal Gasification by Conventional versus Calcium Looping Processes. Industrial & Engineering Chemistry Research, 2014, 53, 18910-18919.	3.7	6
123	Extracting Heuristics for Designing Sustainable Built Environments by Coupling Multiobjective Evolutionary Optimization and Machine Learning. Computer Aided Chemical Engineering, 2018, , 2539-2544.	0.5	6
124	Carbon Footprint of Biomimetic Carbon Fixation by Immobilizing Nature's CO ₂ -sequestering Enzyme and Regenerating Its Energy Carrier. ACS Sustainable Chemistry and Engineering, 2020, 8, 16833-16841.	6.7	6
125	Constructed Wetlands as Unit Operations in Chemical Process Design: Benefits and Simulation. Computers and Chemical Engineering, 2021, 153, 107454.	3.8	6
126	Multi-scale sustainable engineering: Integrated design of reaction networks, life cycles, and economic sectors. Computers and Chemical Engineering, 2022, 156, 107578.	3.8	6

#	Article	IF	CITATIONS
127	Multiscale Statistical Process Control and Model-Based Denoising. Data Handling in Science and Technology, 2000, 22, 411-436.	3.1	5
128	On the "rigorous proof of fuzzy error propagation with matrix-based LCI― International Journal of Life Cycle Assessment, 2013, 18, 516-519.	4.7	5
129	Monetized value of the environmental, health and resource externalities of soy biodiesel. Energy Economics, 2015, 47, 18-24.	12.1	5
130	Including Ecosystem Services in Sustainable Process Design across Multiple Spatial Scales. Computer Aided Chemical Engineering, 2018, 44, 1837-1842.	0.5	5
131	Resource Utilization and Destruction in Indian Industrial Sectors: An Exergy Analysis. Industrial & Engineering Chemistry Research, 2019, 58, 11566-11575.	3.7	5
132	Designing hybrid life cycle assessment models based on uncertainty and complexity. International Journal of Life Cycle Assessment, 2020, 25, 2290-2308.	4.7	5
133	ACS Sustainable Chemistry & Engineering Invites Contributions to a Virtual Special Issue on The Circular Economy of Plastics. ACS Sustainable Chemistry and Engineering, 2021, 9, 1425-1426.	6.7	5
134	Designing industrial landscapes for mitigating air pollution with <scp>spatiallyâ€explicit technoâ€ecological</scp> synergy. AICHE Journal, 2021, 67, e17347.	3.6	5
135	Multifractal characterization of flow in circulating fluidized beds. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 64, 107-115.	0.1	4
136	Ein Ansatz zur automatischen Umwandlung von Rohdaten in Regeln. Teil 2: Eine Fallstudie. Automatisierungstechnik, 1996, 44, 138-145.	0.8	4
137	Statistical Evaluation of Input-Side Metrics for Life Cycle Impact Assessment of Emerging Technologies. Electronics and the Environment, IEEE International Symposium on, 2007, , .	0.0	4
138	Insights into sustainability from complexity analysis of life cycle networks: A case study on gasoline and bio-fuel networks. , 2011, , .		4
139	Revisiting least squares techniques for the purposes of allocation in life cycle inventory. International Journal of Life Cycle Assessment, 2014, 19, 1733-1744.	4.7	4
140	The evolving metabolism of a developing economy: India's exergy flows over four decades. Applied Energy, 2017, 206, 851-857.	10.1	4
141	Meeting the challenge of water sustainability: The role of process systems engineering. AICHE Journal, 2021, 67, e17113.	3.6	4
142	Effects of spatial heterogeneity of leaf density and crown spacing of canopy patches on dry deposition rates. Agricultural and Forest Meteorology, 2021, 306, 108440.	4.8	4
143	Toward Nature-Positive Manufacturing by Adapting Industrial Processes to Pollution Uptake by Vegetation. ACS Sustainable Chemistry and Engineering, 2021, 9, 16709-16718.	6.7	4
144	Empirical Learning through Neural Networks: The Wave-Net Solution. Advances in Chemical Engineering, 1995, , 437-484.	0.9	3

#	Article	IF	CITATIONS
145	Accounting for Resource Use by Thermodynamics. , 2011, , 87-110.		3
146	Developing Sustainable Technology: Metrics From Thermodynamics. , 2011, , 249-264.		3
147	Designing Climate Action and Regulations for sustainaBility (DCARB): Framework and campus application. Journal of Cleaner Production, 2022, 356, 131690.	9.3	3
148	Bayesian Estimation of Unconstrained Nonlinear Dynamic Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 263-268.	0.4	2
149	Energetic and environmental evaluation of titanium dioxide nanoparticles. , 2008, , .		2
150	Eco-LCA: A tool for quantifying the role of ecological resources in LCA. , 2009, , .		2
151	Using Thermodynamics and Statistics to Improve the Quality of Life-Cycle Inventory Data. , 2011, , 235-248.		2
152	Energy Resources and Use: The Present Situation, Possible Sustainable Paths to the Future, and the Thermodynamic Perspective. , 0, , 212-232.		2
153	An Entropy-Based Metric for a Transformational Technology Development. , 2011, , 133-162.		2
154	Assessment of Low Carbon Energy Technologies: Fossil Fuels and CCS. Energy Procedia, 2013, 37, 2637-2644.	1.8	2
155	Engineering, markets, and human behavior: an essential integration for decisions toward sustainability. Current Opinion in Chemical Engineering, 2019, 26, 164-169.	7.8	2
156	Direct and indirect vulnerability of economic sectors to water scarcity: A hotspot analysis of the Indian economy. Journal of Industrial Ecology, 2020, 24, 1323-1337.	5.5	2
157	Assessing the Life Cycle Environmental Implications of Nanomanufacturing: Opportunities and Challenges. , 0, , 19-42.		2
158	Thermodynamic Input-Output Analysis of Economic and Ecological Systems. Eco-efficiency in Industry and Science, 2009, , 459-490.	0.1	2
159	Learning at Multiple Resolutions: Wavelets as Basis Functions in Artificial Neural Networks, and Inductive Decision Trees. Kluwer International Series in Engineering and Computer Science, 1994, , 139-174.	0.2	2
160	Multiscale Bayesian Estimation and Data Rectification. Computational Imaging and Vision, 2001, , 69-110.	0.6	2
161	Exergy and Material Flow in Industrial and Ecological Systems. , 0, , 292-333.		1
162	Bayesian Estimation by Sequential Monte Carlo Sampling: Application to High-Dimensional Nonlinear Dynamic Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 341-346.	0.4	1

#	Article	IF	CITATIONS
163	Enhancing the reliability of C and N accounting in economic activities : Integration of bio-geochemical cycle with Eco-LCA. , 2010, , .		1
164	Enhancing the reliability of C & N accounting in economic activities: Integration of bio-geochemical cycles with Eco-LCA. , 2010, , .		1
165	Thoughts on the Application of Thermodynamics to the Development of Sustainability Science. , 0, , 477-488.		1
166	Emergy analysis of ethanol production from low-input, high-diversity (LIHD) grasslands on degraded farmland. , 2011, , .		1
167	An Integrated Multiscale Modeling Framework for Sustainable Process Design Applications. Computer Aided Chemical Engineering, 2015, , 585-604.	0.5	1
168	Including Nature in Engineering Decisions for Sustainability. , 2017, , 107-116.		1
169	Comprehensive Study of Cellulosic Ethanol Using Hybrid Eco-LCA. , 2010, , 434-456.		1
170	Toward Sustainability by Designing Networks of Technological-Ecological Systems. , 2009, , 167-183.		1
171	Integrating Market Models and Price Effects in a Multiscale Sustainable Process Design Framework. Computer Aided Chemical Engineering, 2019, , 175-180.	0.5	1
172	"Database miningâ€i,•mit Hilfe von Trends, Wavelet-Transformation und Klassifizierungsbämen. Chemie-Ingenieur-Technik, 1994, 66, 541-543.	0.8	0
173	Nonmonotonic Reasoning: The Synthesis of Operating Procedures in Chemical Plants. Advances in Chemical Engineering, 1995, 22, 313-376.	0.9	0
174	Technological-ecological networks for sustainable process design. , 2009, , .		0
175	Integrated multiscale modeling of economic-environmental systems for assessing Biocomplexity of material use. , 2010, , .		0
176	Prior Checking and Moving Horizon Smoothing for Improved Particle Filtering. Industrial & Engineering Chemistry Research, 2010, 49, 4197-4209.	3.7	0
177	Industrial ecology network optimization with life cycle metrics. , 2010, , .		0
178	Energy and Exergy: Does One Need Both Concepts for a Study of Resources Use?. , 0, , 45-86.		0
179	The evolving metabolism of a developing economy — Insight from India's growth. , 2012, , .		0

N footprint and the nexus between C and N footprints. , 2015, , 195-220.

0

#	Article	IF	CITATIONS
181	Including Nature in Engineering for Innovation and Sustainability: Promise, Progress and Peril. Computer Aided Chemical Engineering, 2018, , 53-62.	0.5	Ο
182	Computationally Intensive Nonlinear Regression Methods. , 2020, , 505-517.		0
183	Assessing the Risks to Complex Industrial Networks Due to Loss of Natural Capital and Its Implications to Process Design. , 2009, , 569-570.		0
184	Sustainability Assessment in a Geographical Region and of the Activities Performed. Impact of Meat Consumption on Health and Environmental Sustainability, 2016, , 18-43.	0.4	0
185	Sustainability Assessment in a Geographical Region and of the Activities Performed. , 2020, , 536-561.		0