Maxim A Topchiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5556305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Switching on/switching off solubility controlled permeation of hydrocarbons through glassy polynorbornenes by the length of side alkyl groups. Journal of Membrane Science, 2022, 641, 119848.	8.2	14
2	Polynorbornenes bearing ether fragments in substituents: Promising membrane materials with enhanced CO2 permeability. Journal of Membrane Science, 2022, 648, 120340.	8.2	13
3	Highly efficient synthesis of 3,4-diarylbutadiene sulfones using Heck–Matsuda reaction. RSC Advances, 2022, 12, 5517-5521.	3.6	1
4	Solvent-free palladium-catalyzed C O cross-coupling of (hetero)aryl halides with primary alcohols. Mendeleev Communications, 2022, 32, 258-259.	1.6	1
5	General Method of Synthesis of 5-(Het)arylamino-1,2,3-triazoles via Buchwald–Hartwig Reaction of 5-Amino- or 5-Halo-1,2,3-triazoles. Molecules, 2022, 27, 1999.	3.8	2
6	On the molecular mechanism of nonspecific antimicrobial action of protonated diallylammonium polymers on mycobacterial cells. European Polymer Journal, 2022, 171, 111214.	5.4	3
7	Ring size and nothing else matters: unusual regioselectivity of alkyne hydration by NHC gold(<scp>i</scp>) complexes. Chemical Communications, 2021, 57, 5686-5689.	4.1	15
8	Synthesis and optical properties of novel unsymmetrically substituted benzothiadiazole-based luminophores. Mendeleev Communications, 2021, 31, 33-35.	1.6	10
9	Oneâ€Pot Synthesis of 5â€Aminoâ€1,2,3â€triazole Derivatives via Dipolar Azideâ^'Nitrile Cycloaddition and Dimroth Rearrangement under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2021, 2021, 1378-1384.	2.4	12
10	Complete Genome Sequence of <i>Rhodococcus</i> sp. Strain M8, a Platform Strain for Acrylic Monomer Production. Microbiology Resource Announcements, 2021, 10, .	0.6	2
11	Solvent-free palladium-catalyzed C–O cross-coupling of aryl bromides with phenols. Mendeleev Communications, 2021, 31, 409-411.	1.6	6
12	Solvent-free palladium-catalyzed C–O cross-coupling of aryl bromides with phenols. Mendeleev Communications, 2021, 31, 409-411.	1.6	3
13	NHC Pdii complexes for the solvent-free telomerisation of isoprene with methanol. Mendeleev Communications, 2021, 31, 478-480.	1.6	10
14	Efficient synthesis of 3-arylbutadiene sulfones using the Heck–Matsuda reaction. Mendeleev Communications, 2021, 31, 548-549.	1.6	3
15	Cocatalyst <i>versus</i> precatalyst impact on the vinyl-addition polymerization of norbornenes with polar groups: looking at the other side of the coin. Polymer Chemistry, 2021, 12, 6355-6362.	3.9	9
16	9-ING-41, a Small Molecule Inhibitor of GSK-3β, Potentiates the Effects of Chemotherapy on Colorectal Cancer Cells. Frontiers in Pharmacology, 2021, 12, 777114.	3.5	3
17	Polymerization of 5-Alkylidene-2-norbornenes with Highly Active Pd–N-Heterocyclic Carbene Complex Catalysts: Catalyst Structure–Activity Relationships. ACS Catalysis, 2020, 10, 1663-1678.	11.2	36
18	Impact of the RAFT/MADIX agent on protonated diallylammonium monomer cyclopolymerization with efficient chain transfer to monomer. European Polymer Journal, 2020, 122, 109363.	5.4	7

Махім А Торсніх

#	Article	IF	CITATIONS
19	Polymerization of 5-Ethylidene-2-norbornene in the Presence of Pd–N-Heterocyclic Carbene Complexes with Phosphine and Pyridine Ligands. Polymer Science - Series B, 2020, 62, 319-327.	0.8	3
20	Extension of an Encapsulating Macrobicyclic Ligand Using the Palladium-Catalyzed Suzuki–Miyaura Reaction of a Diiodoclathrochelate Iron(II) Tris-Glyoximate with Reactive Halogen Atoms in Its Apical Substituents. Russian Journal of Inorganic Chemistry, 2020, 65, 1494-1502.	1.3	5
21	Breast cancer organoid model allowed to reveal potentially beneficial combinations of 3,3′-diindolylmethane and chemotherapy drugs. Biochimie, 2020, 179, 217-227.	2.6	13
22	Undirected ortho-selectivity in C–H borylation of arenes catalyzed by NHC platinum(0) complexes. Mendeleev Communications, 2020, 30, 569-571.	1.6	4
23	Deep blue luminescent cyclometallated 1,2,3-triazol-5-ylidene iridium(iii) complexes. Mendeleev Communications, 2020, 30, 717-718.	1.6	8
24	New expanded-ring NHC platinum(0) complexes: Synthesis, structure and highly efficient diboration of terminal alkenes. Journal of Organometallic Chemistry, 2020, 912, 121140.	1.8	8
25	Modifications of addition poly(5-vinyl-2-norbornene) and gas-transport properties of the obtained polymers. Reactive and Functional Polymers, 2020, 149, 104513.	4.1	30
26	Comparative activity of yttrium(iii) pincer complexes in isoprene polymerization. Russian Chemical Bulletin, 2020, 69, 2307-2311.	1.5	4
27	Nitromethane as a reagent for the synthesis of 3-nitroindoles from 2-haloarylamine derivatives. Russian Chemical Bulletin, 2020, 69, 2370-2377.	1.5	12
28	Transitionâ€Metalâ€Free Synthesis of 1,2â€Disubstituted Indoles. European Journal of Organic Chemistry, 2019, 2019, 4844-4854.	2.4	11
29	Alkynyl―or Azidoâ€Functionalized 1,2,3â€Triazoles: Selective MonoCuAAC Promoted by Physical Factors. ChemistrySelect, 2019, 4, 7470-7475.	1.5	5
30	Synthesis, Molecular, and Gas-Transport Properties of Homopolymers Based on 5-Ethylidene-2-norbornene and 5-Vinyl-2-norbornene. Polymer Science - Series C, 2019, 61, 86-101.	1.7	8
31	Solvent-free Suzuki and Stille cross-coupling reactions of 4- and 5-halo-1,2,3-triazoles. Mendeleev Communications, 2019, 29, 147-149.	1.6	20
32	Cyclometallated 1,2,3-triazol-5-ylidene iridium(III) complexes: synthesis, structure, and photoluminescence properties. Mendeleev Communications, 2019, 29, 128-131.	1.6	14
33	<i>In situ</i> transformations of Pd/NHC complexes with N-heterocyclic carbene ligands of different nature into colloidal Pd nanoparticles. Inorganic Chemistry Frontiers, 2019, 6, 482-492.	6.0	19
34	Solvent- and transition metal-free amide synthesis from phenyl esters and aryl amines. RSC Advances, 2019, 9, 1536-1540.	3.6	20
35	Effect of AuPd Bimetal Sensitization on Gas Sensing Performance of Nanocrystalline SnO2 Obtained by Single Step Flame Spray Pyrolysis. Nanomaterials, 2019, 9, 728.	4.1	31
36	Making endo-cyclizations favorable again: a conceptually new synthetic approach to benzotriazoles <i>via</i> azide group directed lithiation/cyclization of 2-azidoaryl bromides. Organic and Biomolecular Chemistry, 2019, 17, 4523-4534.	2.8	10

Махім А Торсніх

#	Article	IF	CITATIONS
37	Mixed er-NHC/phosphine Pd(<scp>ii</scp>) complexes and their catalytic activity in the Buchwald–Hartwig reaction under solvent-free conditions. Dalton Transactions, 2019, 48, 3447-3452.	3.3	31
38	Azide–Alkyne Cycloaddition (CuAAC) in Alkane Solvents Catalyzed by Fluorinated NHC Copper(I) Complex. European Journal of Organic Chemistry, 2019, 2019, 1016-1020.	2.4	20
39	Distribution of benzo-substituted crown-ethers between chloroform and water: effects of macrocycle ring size and lithium chloride. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 535-541.	1.5	7
40	Addition homo- and copolymerization of 3-triethoxysilyltricyclo[4.2.1.02,5]non-7-ene. Russian Chemical Bulletin, 2018, 67, 121-126.	1.5	13
41	Mild and Regioselective Synthesis of 3â€CF ₃ â€Pyrazoles by the AgOTfâ€Catalysed Reaction of CF ₃ â€Ynones with Hydrazines. European Journal of Organic Chemistry, 2018, 2018, 3750-3755.	2.4	33
42	Rare-Earth Complexes with the 5,5′-Bitetrazolate Ligand - Synthesis, Structure, Luminescence Properties, and Combustion Catalysis. European Journal of Inorganic Chemistry, 2018, 2018, 805-815.	2.0	11
43	Stannylation of Aryl Halides, Stille Crossâ€Coupling, and Oneâ€Pot, Twoâ€Step Stannylation/Stille Crossâ€Coupling Reactions under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2018, 2018, 120-125.	2.4	21
44	One-pot two-step stannylation/Stille homocoupling of aryl bromides and iodides under solvent-free conditions. Mendeleev Communications, 2018, 28, 323-325.	1.6	8
45	Addition Homo―and Copolymerizations of Dicyclopentadiene and 5â€ <i>n</i> â€Hexylnorbornene in the Presence of Pdâ€Nâ€Heterocyclic Carbene Complexes. Macromolecular Chemistry and Physics, 2018, 219, 1800323.	2.2	11
46	Microporous Materials Based on Norbornadiene-Based Cross-Linked Polymers. Polymers, 2018, 10, 1382.	4.5	17
47	Addition Polymerization of 5-Ethylidene-2-Norbornene in the Presence of Pd N-Heterocyclic Carbene Complexes. Doklady Chemistry, 2018, 479, 49-52.	0.9	5
48	Addition polymerization of 5-vinyl-2-norbornene and 5-ethylidene-2-norbornene. AIP Conference Proceedings, 2018, , .	0.4	2
49	Synthesis and properties of polynorbornenes containing trialkoxysilyl groups. AIP Conference Proceedings, 2018, , .	0.4	0
50	Janus tricyclononene polymers bearing tri(<i>n</i> -alkoxy)silyl side groups for membrane gas separation. Journal of Materials Chemistry A, 2018, 6, 19393-19408.	10.3	68
51	Synthesis and Study of the Thermal and Ballistic Properties of SMX. Central European Journal of Energetic Materials, 2018, 15, 30-46.	0.4	5
52	Eight-membered-ring diaminocarbenes bearing naphthalene moiety in the backbone: DFT studies, synthesis of amidinium salts, generation of free carbene, metal complexes, and solvent-free copper catalyzed azide–alkyne cycloaddition (CuAAC) reaction. Dalton Transactions, 2017, 46, 4331-4345.	3.3	43
53	Synthesis of metathesis catalysts with fluorinated unsymmetrical N,N'-diaryl imidazoline-based NHC ligands. Journal of Fluorine Chemistry, 2017, 200, 66-76.	1.7	14
54	Fluorinated Unsymmetrical <i>N</i> , <i>N</i> ′â€Diaryl Imidazolium Salts—New Functionalized NHCâ€Ligand Precursors. Chemistry - A European Journal, 2017, 23, 6663-6674.	3.3	20

Махім А Торсніх

#	Article	IF	CITATIONS
55	Optimization Studies on Synthesis of <scp>TKX</scp> â€50. Chinese Journal of Chemistry, 2017, 35, 98-102.	4.9	16
56	A general method of Suzuki–Miyaura cross-coupling of 4- and 5-halo-1,2,3-triazoles in water. Organic and Biomolecular Chemistry, 2017, 15, 9575-9578.	2.8	14
57	Reexamination of an Energetic Nitrate Ester SHN. Propellants, Explosives, Pyrotechnics, 2017, 42, 1014-1019.	1.6	8
58	General Method for the Synthesis of 1,4â€Disubstituted 5â€Haloâ€1,2,3â€ŧriazoles. European Journal of Organic Chemistry, 2017, 2017, 5225-5230.	2.4	15
59	Solvent-free Buchwald–Hartwig amination with low palladium loadings. Mendeleev Communications, 2017, 27, 618-620.	1.6	21
60	On cyclization of 2-chloro-N-phenacylpyridinium ylides by the action of aryldiazonium salts. Chemistry of Heterocyclic Compounds, 2016, 52, 727-729.	1.2	2
61	An unprecedentedly simple method of synthesis of aryl azides and 3-hydroxytriazenes. Green Chemistry, 2016, 18, 5984-5988.	9.0	22
62	New ultra low bandgap thiadiazolequinoxaline-based D-A copolymers for photovoltaic applications. Organic Electronics, 2016, 37, 411-420.	2.6	2
63	Miyaura Borylation and Oneâ€Pot Twoâ€Step Homocoupling of Aryl Chlorides and Bromides under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2016, 358, 977-983.	4.3	49
64	Solventâ€Free Buchwald–Hartwig (Hetero)arylation of Anilines, Diarylamines, and Dialkylamines Mediated by Expandedâ€Ring Nâ€Heterocyclic Carbene Palladium Complexes. European Journal of Organic Chemistry, 2016, 2016, 1908-1914.	2.4	62
65	Synthesis of new symmetrical carbazole- and fluorene-containing α-diketones. Doklady Chemistry, 2015, 463, 215-220.	0.9	2
66	Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russian Chemical Reviews, 2014, 83, 885-985.	6.5	182
67	Solventâ€Free Buchwald–Hartwig Reaction of Aryl and Heteroaryl Halides with Secondary Amines. European Journal of Organic Chemistry, 2014, 2014, 3319-3322.	2.4	49
68	Suzuki–Miyaura Crossâ€Coupling under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2013, 355, 3553-3557.	4.3	28