Naresh Kumar Thangavel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5555989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unveiling the Electrocatalytic Activity of 1T′-MoSe ₂ on Lithium-Polysulfide Conversion Reactions. ACS Applied Materials & Interfaces, 2022, 14, 24486-24496.	8.0	11
2	Nanoscale Visualization of Reversible Redox Pathways in Lithium-Sulfur Battery Using In Situ AFM-SECM. Journal of the Electrochemical Society, 2022, 169, 060501.	2.9	8
3	Reliable and highly sensitive biosensor from suspended MoS2 atomic layer on nano-gap electrodes. Biosensors and Bioelectronics, 2021, 172, 112724.	10.1	23
4	Light-Assisted Rechargeable Lithium Batteries: Organic Molecules for Simultaneous Energy Harvesting and Storage. Nano Letters, 2021, 21, 907-913.	9.1	57
5	Y, Gd, and Pr tri-doped perovskite-type proton conducting electrolytes with improved sinterability and chemical stability. Journal of Alloys and Compounds, 2021, 870, 159431.	5.5	18
6	Mixed Cationic and Anionic Redox in Ni and Co Free Chalcogen-Based Cathode Chemistry for Li-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 15732-15744.	13.7	19
7	Anisotropic mass transport using ionic liquid crystalline electrolytes to suppress lithium dendrite growth. Sustainable Energy and Fuels, 2021, 5, 1488-1497.	4.9	9
8	Chalcogen-Based Anion Redox Cathode Chemistry for Li-Ion Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 1912-1912.	0.0	0
9	Metal-Based Electrocatalysts for High-Performance Lithium-Sulfur Batteries: A Review. Catalysts, 2020, 10, 1137.	3.5	14
10	Tri-Doped BaCeO ₃ –BaZrO ₃ as a Chemically Stable Electrolyte with High Proton-Conductivity for Intermediate Temperature Solid Oxide Electrolysis Cells (SOECs). ACS Applied Materials & Interfaces, 2020, 12, 38275-38284.	8.0	47
11	Nature-Inspired Purpurin Polymer for Li-Ion Batteries: Mechanistic Insights into Energy Storage via Solid-State NMR and Computational Studies. Journal of Physical Chemistry C, 2020, 124, 17939-17948.	3.1	6
12	Atomically Engineered Transition Metal Dichalcogenides for Liquid Polysulfide Adsorption and Their Effective Conversion in Li-S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 27112-27121.	8.0	35
13	Toward Moisture-Stable and Dendrite-Free Garnet-Type Solid-State Electrolytes. ACS Applied Energy Materials, 2020, 3, 6775-6784.	5.1	23
14	Bioderived Molecular Electrodes for Nextâ€Generation Energy torage Materials. ChemSusChem, 2020, 13, 2186-2204.	6.8	32
15	Bioderived Molecular Electrodes for Nextâ€Generation Energyâ€ S torage Materials. ChemSusChem, 2020, 13, 2106-2106.	6.8	0
16	In-Situ Electrochemical Mapping of Lithium-Sulfur Battery Interfaces Using AFM-SECM. ECS Meeting Abstracts, 2020, MA2020-02, 3179-3179.	0.0	0
17	Electrochemical Impedance Studies of Internal Short Circuits of Lithium-Ion Batteries Under Mechanical Abusive Conditions. ECS Meeting Abstracts, 2020, MA2020-02, 1053-1053.	0.0	0
18	Engineered Electrode-Electrolyte Interface for Moisture-Stable, Dendrite-Free Garnet-Type Solid-State Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 903-903.	0.0	0

#	Article	IF	CITATIONS
19	Insights into the Reversible Redox Pathways in Lithium-Sulfur Batteries By in Situ AFM-SECM Coupled Raman Spectroscopy. ECS Meeting Abstracts, 2020, MA2020-02, 3180-3180.	0.0	0
20	Made From Henna! A Fast-Charging, High-Capacity, and Recyclable Tetrakislawsone Cathode Material for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 13836-13844.	6.7	36
21	In Situ Electrochemical Mapping of Lithium–Sulfur Battery Interfaces Using AFM–SECM. Nano Letters, 2019, 19, 5229-5236.	9.1	47
22	Interfacial behavior of water-in-salt electrolytes at porous electrodes and its effect on supercapacitor performance. Electrochimica Acta, 2019, 326, 134989.	5.2	59
23	Electrocatalysis driven high energy density Li-ion polysulfide battery. Electrochimica Acta, 2019, 307, 253-259.	5.2	11
24	Two-Dimensional Material-Reinforced Separator for Li–Sulfur Battery. Journal of Physical Chemistry C, 2018, 122, 10765-10772.	3.1	23
25	Facile synthesis of electrocatalytically active NbS ₂ nanoflakes for an enhanced hydrogen evolution reaction (HER). Sustainable Energy and Fuels, 2018, 2, 96-102.	4.9	41
26	CVD-Grown MoSe ₂ Nanoflowers with Dual Active Sites for Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 27771-27779.	8.0	60
27	Electrocatalysis of Polysulfide Redox in Lithium-Sulfur Battery. ECS Meeting Abstracts, 2018, , .	0.0	0
28	Water-in-Salt Electrolytes for High-Voltage Supercapacitors. ECS Meeting Abstracts, 2018, MA2018-01, 148-148.	0.0	3
29	Understanding Heterogeneous Electrocatalysis of Lithium Polysulfide Redox on Pt and WS ₂ Surfaces. Journal of Physical Chemistry C, 2017, 121, 12718-12725.	3.1	42