James H Adler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5555921/publications.pdf Version: 2024-02-01

IAMES HADLED

#	Article	IF	CITATIONS
1	Monolithic Multigrid for a Reduced-Quadrature Discretization of Poroelasticity. SIAM Journal of Scientific Computing, 2023, 45, S54-S81.	1.3	4
2	An enriched Galerkin method for the Stokes equations. Computers and Mathematics With Applications, 2022, 120, 115-131.	1.4	5
3	A Finite-Element Framework for a Mimetic Finite-Difference Discretization of Maxwell's Equations. SIAM Journal of Scientific Computing, 2021, 43, A2638-A2659.	1.3	5
4	Robust Preconditioners for a New Stabilized Discretization of the Poroelastic Equations. SIAM Journal of Scientific Computing, 2020, 42, B761-B791.	1.3	15
5	First-Order System Least Squares Finite-Elements for Singularly Perturbed Reaction-Diffusion Equations. Lecture Notes in Computer Science, 2020, , 3-14.	1.0	3
6	An a posteriori error estimator for the weak Galerkin least-squares finite-element method. Journal of Computational and Applied Mathematics, 2019, 362, 383-399.	1.1	7
7	Vector-potential finite-element formulations for two-dimensional resistive magnetohydrodynamics. Computers and Mathematics With Applications, 2019, 77, 476-493.	1.4	2
8	New Stabilized Discretizations for Poroelasticity Equations. Lecture Notes in Computer Science, 2019, , 3-14.	1.0	1
9	Compositeâ€grid multigrid for diffusion on the sphere. Numerical Linear Algebra With Applications, 2018, 25, e2115.	0.9	Ο
10	Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms. Liquid Crystals, 2018, 45, 341-350.	0.9	6
11	Discrete Energy Laws for the First-Order System Least-Squares Finite-Element Approach. Lecture Notes in Computer Science, 2018, , 3-20.	1.0	Ο
12	Preconditioning a massâ€conserving discontinuous Galerkin discretization of the Stokes equations. Numerical Linear Algebra With Applications, 2017, 24, e2047.	0.9	14
13	Combining Deflation and Nested Iteration for Computing Multiple Solutions of Nonlinear Variational Problems. SIAM Journal of Scientific Computing, 2017, 39, B29-B52.	1.3	2
14	Robust Solvers for Maxwell's Equations with Dissipative Boundary Conditions. SIAM Journal of Scientific Computing, 2017, 39, S3-S23.	1.3	10
15	Constrained Optimization for Liquid Crystal Equilibria. SIAM Journal of Scientific Computing, 2016, 38, B50-B76.	1.3	14
16	Monolithic Multigrid Methods for Two-Dimensional Resistive Magnetohydrodynamics. SIAM Journal of Scientific Computing, 2016, 38, B1-B24.	1.3	33
17	A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted mesh. IMA Journal of Numerical Analysis, 2016, 36, 1281-1309.	1.5	10
18	An Energy-Minimization Finite-Element Approach for the FrankOseen Model of Nematic Liquid Crystals. SIAM Journal on Numerical Analysis, 2015, 53, 2226-2254.	1.1	16

James H Adler

#	Article	IF	CITATIONS
19	Competition of lattice and basis for alignment of nematic liquid crystals. Physical Review E, 2015, 92, 042501.	0.8	5
20	Graded mesh approximation in weighted Sobolev spaces and elliptic equations in 2D. Mathematics of Computation, 2015, 84, 2191-2220.	1.1	9
21	Energy Minimization for Liquid Crystal Equilibrium with Electric and Flexoelectric Effects. SIAM Journal of Scientific Computing, 2015, 37, S157-S176.	1.3	15
22	Mathematical and computational models of incompressible materials subject to shear. IMA Journal of Applied Mathematics, 2014, 79, 889-914.	0.8	8
23	Error Analysis for Constrained First-Order System Least-Squares Finite-Element Methods. SIAM Journal of Scientific Computing, 2014, 36, A1071-A1088.	1.3	6
24	Island Coalescence Using Parallel First-Order System Least Squares on Incompressible Resistive Magnetohydrodynamics. SIAM Journal of Scientific Computing, 2013, 35, S171-S191.	1.3	10
25	Numerical Approximation of Asymptotically Disappearing Solutions of Maxwell's Equations. SIAM Journal of Scientific Computing, 2013, 35, S386-S401.	1.3	3
26	Improving Conservation for First-Order System Least-Squares Finite-Element Methods. Springer Proceedings in Mathematics and Statistics, 2013, , 1-19.	0.1	3
27	Competition of elasticity and flexoelectricity for bistable alignment of nematic liquid crystals on patterned substrates. Physical Review E, 2012, 86, 040701.	0.8	5
28	Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations. SIAM Journal of Scientific Computing, 2011, 33, 1-24.	1.3	37
29	First-order system least squares and the energetic variational approach for two-phase flow. Journal of Computational Physics, 2011, 230, 6647-6663.	1.9	9
30	First-Order System Least Squares for Incompressible Resistive Magnetohydrodynamics. SIAM Journal of Scientific Computing, 2010, 32, 229-248.	1.3	19
31	Nested Iteration and First-Order System Least Squares for Incompressible, Resistive Magnetohydrodynamics. SIAM Journal of Scientific Computing, 2010, 32, 1506-1526.	1.3	15
32	Monolithic Multigrid Methods for Magnetohydrodynamics. SIAM Journal of Scientific Computing, 0, , S70-S91.	1.3	9