Jia Wei Chew

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5555576/jia-wei-chew-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

228
papers
6,545
h-index
71
g-index

8,380
ext. papers

8,380
avg, IF

6.75
L-index

#	Paper	IF	Citations
228	Organic Solvent Permeation through Negatively Charged Graphene Oxide Membranes. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 1499-1508	8.3	2
227	Coriolis Effect Particles Segregator (CEPS): the feasibility of scaling up lab-on-a-chip separation. <i>Microfluidics and Nanofluidics</i> , 2022 , 26, 1	2.8	
226	Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater. <i>Chinese Chemical Letters</i> , 2022 ,	8.1	2
225	Influence of foulant particle shape on membrane fouling in dead-end microfiltration. <i>Journal of Membrane Science</i> , 2022 , 647, 120265	9.6	О
224	Concrete waste-derived aggregate for concrete manufacture. <i>Journal of Cleaner Production</i> , 2022 , 338, 130637	10.3	4
223	Organic solvent forward osmosis membranes for pharmaceutical concentration. <i>Journal of Membrane Science</i> , 2022 , 642, 119965	9.6	5
222	Molecular dynamics simulation of the competitive adsorption behavior of effluent organic matters by heated aluminum oxide particles (HAOPs). <i>Separation and Purification Technology</i> , 2022 , 292, 120961	8.3	O
221	Enantiomeric Separation of Racemic Mixtures Using Chiral-Selective and Organic-Solvent-Resistant Thin-Film Composite Membranes ACS Applied Materials & amp; Interfaces, 2022,	9.5	2
220	Assessing the potential of highly permeable reverse osmosis membranes for desalination: Specific energy and footprint analysis. <i>Desalination</i> , 2022 , 533, 115771	10.3	3
219	Highly Robust Interfacially Polymerized PA Layer on Thermally Responsive Semi-IPN Hydrogel: Toward On-Demand Tuning of Porosity and Surface Charge. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 ,	9.5	1
218	Mechanistic insights into the membrane fouling mechanism during ultrafiltration of high-concentration proteins via in-situ electrical impedance spectroscopy (EIS). <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 106, 429-429	6.3	O
217	Understanding the Effect of Pore Size on the Separation Efficiency of Methane Ethane Mixtures Using Kinetic Monte Carlo Simulation. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 15264-	· 1 5273	0
216	Cross-Linked Polycarbonate Microfiltration Membranes with Improved Solvent Resistance. <i>Langmuir</i> , 2021 , 37, 4025-4032	4	3
215	Preparation of porous carbon materials by polyphosphazene as precursor for sorption of U(VI). <i>Colloids and Interface Science Communications</i> , 2021 , 41, 100387	5.4	4
214	Effect of lognormal particle size distributions on particle spreading in additive manufacturing. <i>Advanced Powder Technology</i> , 2021 , 32, 1127-1144	4.6	3
213	Influence of pH and NaCl concentration on boron rejection during nanofiltration. <i>Separation and Purification Technology</i> , 2021 , 261, 118248	8.3	2
212	Competitive and Synergistic Adsorption of Mixtures of Polar and Nonpolar Gases in Carbonaceous Nanopores. <i>Langmuir</i> , 2021 , 37, 6754-6764	4	2

(2021-2021)

211	Membrane fouling by mixtures of oppositely charged particles. <i>Journal of Membrane Science</i> , 2021 , 625, 119093	9.6	6
210	Molecular dynamics study on membrane fouling by oppositely charged proteins. <i>AICHE Journal</i> , 2021 , 67, e17335	3.6	2
209	Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. <i>Chem Catalysis</i> , 2021 , 1, 44-68		29
208	Organic matter removal from a membrane bioreactor effluent for reverse osmosis fouling mitigation by microgranular adsorptive filtration system. <i>Desalination</i> , 2021 , 506, 115016	10.3	5
207	Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples. <i>Science of the Total Environment</i> , 2021 , 765, 1426	8 ¹ 0.2	25
206	Synthesis and characterization of poly(TRIM/VPA) functionalized graphene oxide nanoribbons aerogel for highly efficient capture of thorium(IV) from aqueous solutions. <i>Applied Surface Science</i> , 2021 , 536, 147829	6.7	4
205	Effect of initial particle deposition rate on cake formation during dead-end microfiltration. <i>Journal of Membrane Science</i> , 2021 , 618, 118672	9.6	10
204	Porosimetric membrane characterization techniques: A review. <i>Journal of Membrane Science</i> , 2021 , 619, 118750	9.6	17
203	Key influence of clusters of Geldart Group B particles in a circulating fluidized bed riser. <i>Chemical Engineering Journal</i> , 2021 , 413, 127386	14.7	6
202	Microfiltration of saline crude oil emulsions: Effects of dispersant and salinity. <i>Journal of Hazardous Materials</i> , 2021 , 412, 124747	12.8	1
201	Membrane fouling by lysozyme: Effect of local interaction. AICHE Journal, 2021, 67, e17212	3.6	5
200	Fast versus turbulent fluidization of Geldart Group B particles. AICHE Journal, 2021, 67, e17216	3.6	1
199	Molecular dynamics investigation of membrane fouling in organic solvents. <i>Journal of Membrane Science</i> , 2021 , 632, 119329	9.6	3
198	Effect of polydispersity on bubble characteristics of Geldart Group B particles. <i>Chemical Engineering Journal</i> , 2021 , 420, 129880	14.7	1
197	Directionally tailoring the macroscopic polarization of piezocatalysis for hollow zinc sulfide on dual-doped graphene. <i>Nano Energy</i> , 2021 , 88, 106312	17.1	5
196	Membrane fouling mitigation techniques for oily wastewater: A short review. <i>Journal of Water Process Engineering</i> , 2021 , 43, 102293	6.7	10
195	Internal membrane fouling by proteins during microfiltration. <i>Journal of Membrane Science</i> , 2021 , 637, 119589	9.6	9
194	Electrically conductive hydrophobic membrane cathode for membrane distillation with super anti-oil-fouling capability: Performance and mechanism. <i>Desalination</i> , 2021 , 516, 115199	10.3	4

193	Electrospun polyimide-based thin-film composite membranes for organic solvent nanofiltration. Journal of Membrane Science, 2021 , 640, 119825	9.6	3
192	Effect of lognormal particle size distributions of non-spherical particles on hopper discharge characteristics. <i>Chemical Engineering Research and Design</i> , 2020 , 163, 230-240	5.5	1
191	Discrete element method study on hopper discharge behaviors of binary mixtures of nonspherical particles. <i>AICHE Journal</i> , 2020 , 66, e16254	3.6	2
190	Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes. <i>Small</i> , 2020 , 16, e1907575	11	11
189	Realizing the Intrinsic Electrochemical Activity of Acidic N-Doped Graphene through 1-Pyrenesulfonic Acid Bridges. <i>Advanced Functional Materials</i> , 2020 , 30, 2001237	15.6	
188	Membrane fouling by emulsified oil: A review. Separation and Purification Technology, 2020, 248, 11691	9 8.3	60
187	The effect of particle initial charge on minimum pickup velocity (U) in pneumatic conveying. <i>Chemical Engineering Research and Design</i> , 2020 , 156, 343-352	5.5	1
186	Engineering highly effective nanofibrous membranes to demulsify surfactant-stabilized oil-in-water emulsions. <i>Journal of Membrane Science</i> , 2020 , 611, 118398	9.6	19
185	Link between interfacial interaction and membrane fouling during organic solvent ultrafiltration of colloidal foulants. <i>Journal of Membrane Science</i> , 2020 , 611, 118369	9.6	10
184	Internal fouling during microfiltration with foulants of different surface charges. <i>Journal of Membrane Science</i> , 2020 , 602, 117983	9.6	11
183	An environmentally sustainable approach for online chemical cleaning of MBR with activated peroxymonosulfate. <i>Journal of Membrane Science</i> , 2020 , 600, 117872	9.6	11
182	Incorporation of single cobalt active sites onto N-doped graphene for superior conductive membranes in electrochemical filtration. <i>Journal of Membrane Science</i> , 2020 , 602, 117966	9.6	6
181	Membrane fouling mitigation by fluidized granular activated carbon: Effect of fiber looseness and impact on irreversible fouling. <i>Separation and Purification Technology</i> , 2020 , 242, 116764	8.3	6
180	The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. <i>Journal of Membrane Science</i> , 2020 , 601, 117865	9.6	42
179	Fouling behavior of colloidal particles in organic solvent ultrafiltration. <i>Journal of Membrane Science</i> , 2020 , 599, 117836	9.6	17
178	Application of machine learning methods to understand and predict circulating fluidized bed riser flow characteristics. <i>Chemical Engineering Science</i> , 2020 , 217, 115503	4.4	20
177	Pre-deposited dynamic membrane filtration - A review. Water Research, 2020, 173, 115558	12.5	28
176	Investigation of the high U(VI) adsorption properties of phosphoric acid-functionalized heteroatoms-doped carbon materials. <i>Solid State Sciences</i> , 2020 , 104, 106248	3.4	8

(2020-2020)

175	Localized induction heating of metallic spacers for energy-efficient membrane distillation. <i>Journal of Membrane Science</i> , 2020 , 606, 118150	9.6	11
174	Critical flux of colloidal foulant in microfiltration: Effect of organic solvent. <i>Journal of Membrane Science</i> , 2020 , 616, 118531	9.6	3
173	Flow dynamics of binary mixtures of non-spherical particles in the rolling-regime rotating drum. <i>Powder Technology</i> , 2020 , 361, 930-942	5.2	4
172	Segregation behavior of binary mixtures of cylindrical particles with different length ratios in the rotating drum. <i>AICHE Journal</i> , 2020 , 66, e16799	3.6	7
171	Particle-scale characteristics of the three distinct regions in the multi-chamber slot-rectangular spouted bed. <i>Powder Technology</i> , 2020 , 360, 658-672	5.2	4
170	N, P and S co-doped carbon materials derived from polyphosphazene for enhanced selective U(VI) adsorption. <i>Science of the Total Environment</i> , 2020 , 706, 136019	10.2	17
169	Detailed kinetic modeling of H2S formation during fuel-rich combustion of pulverized coal. <i>Fuel Processing Technology</i> , 2020 , 199, 106276	7.2	4
168	Mechanistic understanding of the adsorption of natural organic matter by heated aluminum oxide particles (HAOPs) via molecular dynamics simulation. <i>Journal of Membrane Science</i> , 2020 , 598, 117651	9.6	8
167	Unlocking the high redox activity of MoS2 on dual-doped graphene as a superior piezocatalyst. <i>Nano Energy</i> , 2020 , 68, 104366	17.1	25
166	Metal-organic framework membranes for wastewater treatment and water regeneration. <i>Coordination Chemistry Reviews</i> , 2020 , 404, 213116	23.2	132
165	Assessing internal fouling during microfiltration using optical coherence tomography and evapoporometry. <i>Journal of Membrane Science</i> , 2020 , 595, 117588	9.6	7
164	Superior membrane distillation by induction heating of 3D rGO/Nafion/Ni foam for water treatment. <i>Journal of Membrane Science</i> , 2020 , 616, 118609	9.6	3
163	Development of an integrated aerobic granular sludge MBR and reverse osmosis process for municipal wastewater reclamation. <i>Science of the Total Environment</i> , 2020 , 748, 141309	10.2	6
162	Do particle-related parameters influence circulating fluidized bed (CFB) riser flux and elutriation?. <i>Chemical Engineering Science</i> , 2020 , 227, 115935	4.4	6
161	In-situ monitoring of oil emulsion fouling in ultrafiltration via electrical impedance spectroscopy (EIS): Influence of surfactant. <i>Journal of Membrane Science</i> , 2020 , 616, 118527	9.6	11
160	The physisorption mechanism of SO on graphitized carbon. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 21463-21473	3.6	7
159	Oil droplet behavior on model nanofiltration membrane surfaces under conditions of hydrodynamic shear and salinity. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 247-259	9.3	10
158	The roles of particles in enhancing membrane filtration: A review. <i>Journal of Membrane Science</i> , 2020 , 595, 117570	9.6	28

157	A fluidized-bed model for NiMgW-catalyzed CO2 methanation. <i>Particuology</i> , 2020 , 49, 55-64	2.8	10
156	CFD-DEM study of geometry changes in an AnFMBR towards particle momentum. <i>Chemical Engineering Journal</i> , 2020 , 379, 122336	14.7	4
155	Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production. <i>Chemical Engineering Journal</i> , 2020 , 379, 122346	14.7	81
154	Effect of membrane fouling on chiral separation. <i>Journal of Membrane Science</i> , 2020 , 593, 117352	9.6	12
153	Augmentation of hydroxyl groups as electrocatalytic active sites in porous graphene. <i>Carbon</i> , 2019 , 154, 384-390	10.4	4
152	Construction of hole-transported MoO3-x coupled with CdS nanospheres for boosting photocatalytic performance via oxygen-defects-mediated Z-scheme charge transfer. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e4780	3.1	17
151	Particle-scale modeling of biomass gasification in the three-dimensional bubbling fluidized bed. Energy Conversion and Management, 2019 , 196, 1-17	10.6	29
150	Zwitterionic grafting of sulfobetaine methacrylate (SBMA) on hydrophobic PVDF membranes for enhanced anti-fouling and anti-wetting in the membrane distillation of oil emulsions. <i>Journal of Membrane Science</i> , 2019 , 588, 117196	9.6	44
149	Multifunctional Piezoelectric Heterostructure of BaTiO@Graphene: Decomplexation of Cu-EDTA and Recovery of Cu. <i>Environmental Science & Environmental </i>	10.3	32
148	Tetrabromobisphenol A (TBBPA) inhibits denitrification via regulating carbon metabolism to decrease electron donation and bacterial population. <i>Water Research</i> , 2019 , 162, 190-199	12.5	32
147	Fast Pyrolysis of Cellulose, Hemicellulose, and Lignin: Effect of Operating Temperature on Bio-oil Yield and Composition and Insights into the Intrinsic Pyrolysis Chemistry. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 15838-15852	3.9	49
146	Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier. <i>Energy</i> , 2019 , 181, 1075-1093	7.9	24
145	Effects of composition faults in ternary metal chalcogenides (Zn In2S3+, x = 1B) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117810	21.8	57
144	Effect of surfactant hydrophobicity and charge type on membrane distillation performance. <i>Journal of Membrane Science</i> , 2019 , 587, 117168	9.6	25
143	Unravelling the catalytic influence of naturally occurring salts on biomass pyrolysis chemistry using glucose as a model compound: a combined experimental and DFT study. <i>Catalysis Science and Technology</i> , 2019 , 9, 3504-3524	5.5	16
142	Membrane characterization via evapoporometry (EP) and liquid-liquid displacement porosimetry (LLDP) techniques. <i>Journal of Membrane Science</i> , 2019 , 586, 248-258	9.6	12
141	Nickel cobalt catalyst supported on TiO2-coated SiO2 spheres for CO2 methanation in a fluidized bed. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 13443-13455	6.7	22
140	Review on Reaction Mechanisms of Sulfur Species During Coal Combustion. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2019 , 141,	2.6	3

139	Membrane-based separation for oily wastewater: A practical perspective. <i>Water Research</i> , 2019 , 156, 347-365	12.5	188
138	Cake formation of bidisperse suspensions in dead-end microfiltration. <i>Journal of Membrane Science</i> , 2019 , 577, 31-40	9.6	12
137	Microfiltration of oil emulsions stabilized by different surfactants. <i>Journal of Membrane Science</i> , 2019 , 579, 199-209	9.6	28
136	A three-dimensional plasmonic spacer enables highly efficient solar-enhanced membrane distillation of seawater. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10206-10211	13	19
135	Numerical investigation of the back-mixing and non-uniform characteristics in the three-dimensional full-loop circulating fluidized bed combustor with six parallel cyclones. <i>Applied Thermal Engineering</i> , 2019 , 153, 524-535	5.8	12
134	In-situ characterization of cake layer fouling during crossflow microfiltration of oil-in-water emulsion. <i>Separation and Purification Technology</i> , 2019 , 218, 51-58	8.3	13
133	Tunable affinity separation enables ultrafast solvent permeation through layered double hydroxide membranes. <i>Journal of Membrane Science</i> , 2019 , 591, 117318	9.6	12
132	Numerical Investigation of Bubble Dynamics during Biomass Gasification in a Bubbling Fluidized Bed. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 ,	8.3	3
131	Two-Dimensional Transition-Metal Dichalcogenide-Based Membrane for Ultrafast Solvent Permeation. <i>Chemistry of Materials</i> , 2019 , 31, 10002-10007	9.6	11
130	Spacer vibration for fouling control of submerged flat sheet membranes. <i>Separation and Purification Technology</i> , 2019 , 210, 719-728	8.3	23
129	Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 290-	21.8 301	155
128	Membrane oscillation and slot (pore) blocking in oilWater separation. <i>Chemical Engineering Research and Design</i> , 2019 , 142, 111-120	5.5	12
127	Adaptation of evapoporometry (EP) to characterize the continuous pores and interpore connectivity in polymeric membranes. <i>Journal of Membrane Science</i> , 2019 , 575, 17-27	9.6	6
126	Enhancing fouling mitigation of submerged flat-sheet membranes by vibrating 3D-spacers. <i>Separation and Purification Technology</i> , 2019 , 215, 70-80	8.3	22
125	Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption. <i>Applied Surface Science</i> , 2019 , 466, 893-90	o 2 ·7	39
124	Metallic spacers to enhance membrane distillation. <i>Journal of Membrane Science</i> , 2019 , 572, 171-183	9.6	10
123	Critical flux and fouling mechanism in cross flow microfiltration of oil emulsion: Effect of viscosity and bidispersity. <i>Separation and Purification Technology</i> , 2019 , 212, 684-691	8.3	15
122	Understanding the varying discharge rates of lognormal particle size distributions from a hopper using the Discrete Element Method. <i>Powder Technology</i> , 2019 , 342, 356-370	5.2	13

121	Numerical investigation of the cluster property and flux distribution in three-dimensional full-loop circulating fluidized bed with multiple parallel cyclones. <i>Powder Technology</i> , 2019 , 342, 253-266	5.2	8
120	DEM investigation of the axial dispersion behavior of a binary mixture in the rotating drum. <i>Powder Technology</i> , 2018 , 330, 93-104	5.2	18
119	Monitoring local membrane fouling mitigation by fluidized GAC in lab-scale and pilot-scale AnFMBRs. <i>Separation and Purification Technology</i> , 2018 , 199, 331-345	8.3	9
118	Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 213-225	21.8	211
117	Petal-like CdS nanostructures coated with exfoliated sulfur-doped carbon nitride via chemically activated chain termination for enhanced visible-lightdriven photocatalytic water purification and H2 generation. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 181-191	21.8	123
116	Understanding membrane pore-wetting in the membrane distillation of oil emulsions via molecular dynamics simulations. <i>Journal of Membrane Science</i> , 2018 , 551, 76-84	9.6	30
115	Impact of the Multihole Wall Air Coupling with Air Staged on NOx Emission during Pulverized Coal Combustion. <i>Energy & Double States</i> , 2018, 32, 1464-1473	4.1	11
114	Photogenerated charge transfer via interfacial internal electric field for significantly improved photocatalysis in direct Z-scheme oxygen-doped carbon nitrogen/CoAl-layered double hydroxide heterojunction. <i>Applied Catalysis B: Environmental</i> , 2018 , 227, 530-540	21.8	152
113	Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method. <i>Physical Review E</i> , 2018 , 97, 023302	2.4	14
112	Clay-Inspired MXene-Based Electrochemical Devices and Photo-Electrocatalyst: State-of-the-Art Progresses and Challenges. <i>Advanced Materials</i> , 2018 , 30, e1704561	24	301
111	An energy-efficient method for mitigating membrane fouling: A novel embodiment of the inverse fluidized bed. <i>Separation Science and Technology</i> , 2018 , 53, 683-695	2.5	3
110	Relationship between scouring efficiency and overall concentration of fluidized granular activated carbon (GAC) in microfiltration. <i>Chemical Engineering Research and Design</i> , 2018 , 132, 28-39	5.5	7
109	Quasi-polymeric construction of stable perovskite-type LaFeO/g-CN heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. <i>Journal of Hazardous Materials</i> , 2018 , 347, 412-422	12.8	220
108	Effect of Temperature and Transport on the Yield and Composition of Pyrolysis-Derived Bio-Oil from Glucose. <i>Energy & Discourt Sensor</i> (1988) 12, 6008-6021	4.1	18
107	A numerical study of the segregation phenomenon of lognormal particle size distributions in the rotating drum. <i>Physics of Fluids</i> , 2018 , 30, 053301	4.4	7
106	Consistent boundary conditions of the multiple-relaxation-time lattice Boltzmann method for convection diffusion equations. <i>Computers and Fluids</i> , 2018 , 170, 24-40	2.8	7
105	Construction of hierarchical 2D-2D Zn3In2S6/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 58-69	21.8	155

(2018-2018)

103	Characteristics of non-spherical fluidized media in a fluidized bedthembrane reactor: Effect of particle sphericity on critical flux. <i>Separation and Purification Technology</i> , 2018 , 202, 185-199	8.3	6
102	Correlating the hydrodynamics of fluidized media with the extent of membrane fouling mitigation: Effect of bidisperse GAC mixtures. <i>Separation and Purification Technology</i> , 2018 , 192, 309-321	8.3	6
101	Evaluation of correlations for minimum fluidization velocity (U) in gas-solid fluidization. <i>Powder Technology</i> , 2018 , 323, 454-485	5.2	44
100	Analyzing external and internal membrane fouling by oil emulsions via 3D optical coherence tomography. <i>Journal of Membrane Science</i> , 2018 , 548, 632-640	9.6	42
99	Boron transfer during desalination by electrodialysis. <i>Journal of Membrane Science</i> , 2018 , 547, 64-72	9.6	11
98	Simulation of the granular flow of cylindrical particles in the rotating drum. <i>AICHE Journal</i> , 2018 , 64, 38	33 <u>5</u> :&84	189
97	Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. <i>Water Research</i> , 2018 , 144, 215-225	12.5	296
96	Striping phenomenon during cross-flow microfiltration of oil-in-water emulsions. <i>Separation and Purification Technology</i> , 2018 , 207, 514-522	8.3	13
95	Assessment of oil fouling by oil-membrane interaction energy analysis. <i>Journal of Membrane Science</i> , 2018 , 560, 21-29	9.6	44
94	Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. <i>Journal of Membrane Science</i> , 2018 , 565, 254-265	9.6	59
93	Impact of multi-hole-wall air coupling with air-staged technology on H2S evolution during pulverized coal combustion. <i>Fuel Processing Technology</i> , 2018 , 179, 277-284	7.2	12
92	DEM study on the discharge characteristics of lognormal particle size distributions from a conical hopper. <i>AICHE Journal</i> , 2018 , 64, 1174-1190	3.6	12
91	Effect of the surface charge of monodisperse particulate foulants on cake formation. <i>Journal of Membrane Science</i> , 2018 , 548, 108-116	9.6	20
90	DEM Study on the effect of particle-size distribution on jamming in a 3D conical hopper. <i>AICHE Journal</i> , 2018 , 65, 512	3.6	3
89	Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling. <i>Applied Energy</i> , 2018 , 231, 1079-1088	10.7	21
88	Fast and High Amount of U(VI) Uptake by Functional Magnetic Carbon Nanotubes with Phosphate Group. <i>Industrial & Discoup. Industrial & Discoup. Industrial</i>	3.9	16
87	Influence of Alkali and Alkaline-Earth Metals on the Cleavage of Glycosidic Bond in Biomass Pyrolysis: A DFT Study Using Cellobiose as a Model Compound. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 7646-7658	2.8	26
86	Understanding membrane fouling by oil-in-water emulsion via experiments and molecular dynamics simulations. <i>Journal of Membrane Science</i> , 2018 , 566, 140-150	9.6	34

85	Lattice model effects on the accuracy of the boundary condition implementations for the convection diffusion lattice Boltzmann method. <i>Computers and Fluids</i> , 2018 , 176, 153-169	2.8	5
84	Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum. <i>Physics of Fluids</i> , 2018 , 30, 053302	4.4	6
83	An alternative implementation of the kinetic theory based axisymmetric lattice Boltzmann model. <i>Computers and Mathematics With Applications</i> , 2018 , 76, 1388-1407	2.7	1
82	Effect of mechanical scouring by granular activated carbon (GAC) on membrane fouling mitigation. <i>Desalination</i> , 2017 , 403, 80-87	10.3	42
81	Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications. <i>Journal of Membrane Science</i> , 2017 , 526, 377-386	9.6	11
80	A network-based approach to interpreting pore blockage and cake filtration during membrane fouling. <i>Journal of Membrane Science</i> , 2017 , 528, 112-125	9.6	20
79	CFD study on the hydrodynamics of fluidized granular activated carbon in AnFMBR applications. <i>Separation and Purification Technology</i> , 2017 , 178, 75-89	8.3	17
78	Effect of cross-flow velocity, oil concentration and salinity on the critical flux of an oil-in-water emulsion in microfiltration. <i>Journal of Membrane Science</i> , 2017 , 530, 11-19	9.6	58
77	Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn(OH) 6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 543-553	21.8	120
76	Minimum pickup velocity: The transition between nano-scale and micro-scale. <i>AICHE Journal</i> , 2017 , 63, 1512-1519	3.6	6
75	Effect of bubble characteristics on critical flux in the microfiltration of particulate foulants. <i>Journal of Membrane Science</i> , 2017 , 535, 279-293	9.6	18
74	Millifluidic synthesis of amorphous drug-polysaccharide nanoparticle complex with tunable size intended for supersaturating drug delivery applications. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2017 , 112, 196-203	5.7	9
73	Ultrafiltration of saline oil-in-water emulsions stabilized by an anionic surfactant: Effect of surfactant concentration and divalent counterions. <i>Journal of Membrane Science</i> , 2017 , 537, 384-395	9.6	60
72	Understanding oily wastewater treatment via membrane distillation. <i>Journal of Membrane Science</i> , 2017 , 539, 284-294	9.6	61
71	Impact of draft plate on the inter-chamber interaction in a two-chamber spout-fluid bed. <i>Applied Thermal Engineering</i> , 2017 , 119, 490-504	5.8	6
70	Evapoporometry adaptation to determine the lumen-side pore-size distribution (PSD) of hollow fiber and tubular membranes. <i>Journal of Membrane Science</i> , 2017 , 526, 1-8	9.6	9
69	Extending the uppermost pore diameter measureable via Evapoporometry. <i>Journal of Membrane Science</i> , 2017 , 524, 637-643	9.6	7
68	Numerical study on the axial segregation dynamics of a binary-size granular mixture in a three-dimensional rotating drum. <i>Physics of Fluids</i> , 2017 , 29, 103302	4.4	9

(2017-2017)

67	Influence of module orientation and geometry in the membrane distillation of oily seawater. <i>Desalination</i> , 2017 , 423, 111-123	10.3	19
66	Intrusive probes in riser applications. AICHE Journal, 2017, 63, 5361-5374	3.6	8
65	Towards the generalization of membrane structure-property relationship of polyimides and copolyimides: A group contribution study. <i>Journal of Membrane Science</i> , 2017 , 543, 233-254	9.6	5
64	Synthesis of ligand-carrying polymeric nanoparticles for use in extraction and recovery of metal ions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 533, 179-186	5.1	7
63	Segregation dynamics of a binary-size mixture in a three-dimensional rotating drum. <i>Chemical Engineering Science</i> , 2017 , 172, 652-666	4.4	32
62	Thermochromic Ionogel: A New Class of Stimuli Responsive Materials with Super Cyclic Stability for Solar Modulation. <i>Chemistry of Materials</i> , 2017 , 29, 6947-6955	9.6	62
61	Contaminant rejection in the presence of humic acid by membrane distillation for surface water treatment. <i>Journal of Membrane Science</i> , 2017 , 541, 291-299	9.6	42
60	Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit. <i>Physical Review E</i> , 2017 , 95, 043311	2.4	6
59	A comparative study of the axisymmetric lattice Boltzmann models under the incompressible limit. <i>Computers and Mathematics With Applications</i> , 2017 , 74, 817-841	2.7	4
58	Impact of granular segregation on the solid residence time and active-passive exchange in a rotating drum. <i>Chemical Engineering Science</i> , 2017 , 173, 287-302	4.4	18
57	Alternative extrapolation-based symmetry boundary implementations for the axisymmetric lattice Boltzmann method. <i>Physical Review E</i> , 2017 , 95, 043312	2.4	7
56	Annulus flow behavior of Geldart Group B particles in a pilot-scale CFB riser. <i>Powder Technology</i> , 2017 , 305, 816-828	5.2	12
55	Effect of fluidized granular activated carbon (GAC) on critical flux in the microfiltration of particulate foulants. <i>Journal of Membrane Science</i> , 2017 , 523, 409-417	9.6	24
54	Influence of backwashing on the pore size of hollow fiber ultrafiltration membranes. <i>Journal of Membrane Science</i> , 2017 , 521, 33-42	9.6	33
53	Review of cluster characteristics in circulating fluidized bed (CFB) risers. <i>Chemical Engineering Science</i> , 2017 , 158, 70-95	4.4	70
52	Improving the operational stability of the multi-chamber spout-fluid bed via the insertion of a submerged partition plate. <i>AICHE Journal</i> , 2017 , 63, 485-500	3.6	5
51	DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum. <i>Physics of Fluids</i> , 2017 , 29, 123301	4.4	10
50	The Performance and Fouling Control of Submerged Hollow Fiber (HF) Systems: A Review. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 765	2.6	30

49	Interpreting Differential Pressure Signals for Particle Properties and Operating Conditions in a Pilot-Scale Circulating Fluidized Bed Riser. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 8659-8670	3.9	19
48	CFD D EM investigation into the scaling up of spout-fluid beds via two interconnected chambers. <i>AICHE Journal</i> , 2016 , 62, 1898-1916	3.6	8
47	DEM study of granular flow characteristics in the active and passive regions of a three-dimensional rotating drum. <i>AICHE Journal</i> , 2016 , 62, 3874-3888	3.6	22
46	Polarity Reversal in Homologous Series of Surfactant-Free Janus Nanoparticles: Toward the Next Generation of Amphiphiles. <i>Langmuir</i> , 2016 , 32, 6376-86	4	42
45	Effect of spacer and crossflow velocity on the critical flux of bidisperse suspensions in microfiltration. <i>Journal of Membrane Science</i> , 2016 , 513, 101-107	9.6	32
44	Numerical investigation on the effect of draft plates on spouting stability and gasBolid characteristics in a spout-fluid bed. <i>Chemical Engineering Science</i> , 2016 , 148, 108-125	4.4	27
43	Effect of humic-acid fouling on membrane distillation. <i>Journal of Membrane Science</i> , 2016 , 504, 263-273	9.6	28
42	Characterizing the scouring efficiency of Granular Activated Carbon (GAC) particles in membrane fouling mitigation via wavelet decomposition of accelerometer signals. <i>Journal of Membrane Science</i> , 2016 , 498, 105-115	9.6	36
41	Correlating the hydrodynamics of fluidized granular activated carbon (GAC) with membrane-fouling mitigation. <i>Journal of Membrane Science</i> , 2016 , 510, 38-49	9.6	37
40	Impact of the surface energy of particulate foulants on membrane fouling. <i>Journal of Membrane Science</i> , 2016 , 510, 101-111	9.6	52
39	Influence of operating parameters and flow regime on solid dispersion behavior in a gasBolid spout-fluid bed. <i>Chemical Engineering Science</i> , 2016 , 142, 112-125	4.4	11
38	Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: Spray drying versus spray freeze drying preparation. <i>International Journal of Pharmaceutics</i> , 2016 , 499, 38-46	6.5	33
37	Enhanced performance of submerged hollow fibre microfiltration by fluidized granular activated carbon. <i>Journal of Membrane Science</i> , 2016 , 499, 47-55	9.6	27
36	Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil water emulsions. <i>Journal of Membrane Science</i> , 2016 , 500, 211-224	9.6	143
35	Computational Study of the Effect of Draft Plates on the Solid Behavior in a Spout-Fluid Bed. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 12598-12615	3.9	4
34	Alternative kinetic theory based lattice Boltzmann model for incompressible axisymmetric flows. <i>Computers and Mathematics With Applications</i> , 2016 , 72, 2751-2772	2.7	6
33	Impact of particle diameter, density and sphericity on minimum pickup velocity of binary mixtures in gas-solid pneumatic conveying. <i>Powder Technology</i> , 2016 , 297, 311-319	5.2	17
32	Consistent lattice Boltzmann methods for incompressible axisymmetric flows. <i>Physical Review E</i> , 2016 , 94, 023302	2.4	12

(2011-2015)

31	Impact of continuous particle size distribution width and particle sphericity on minimum pickup velocity in gasBolid pneumatic conveying. <i>Chemical Engineering Science</i> , 2015 , 130, 92-100	4.4	21
30	Improved design and protocol for evapoporometry determination of the pore-size distribution. <i>Journal of Membrane Science</i> , 2015 , 496, 334-343	9.6	16
29	Unsteady-state shear strategies to enhance mass-transfer for the implementation of ultrapermeable membranes in reverse osmosis: A review. <i>Desalination</i> , 2015 , 356, 328-348	10.3	75
28	Review of entrainment correlations in gasBolid fluidization. <i>Chemical Engineering Journal</i> , 2015 , 260, 152-171	14.7	48
27	Minimum pickup velocity (U pu) of nanoparticles in gasBolid pneumatic conveying. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	11
26	Computational study of spout collapse and impact of partition plate in a double slot-rectangular spouted bed. <i>AICHE Journal</i> , 2015 , 61, 4087-4101	3.6	6
25	Comparative study of Transport Disengaging Height (TDH) correlations in gasBolid fluidization. <i>Powder Technology</i> , 2015 , 275, 220-238	5.2	24
24	Surfactant-free synthesis of sub-100 nm poly(styrene-co-divinylbenzene) nanoparticles by one-step ultrasonic assisted emulsification/polymerization. <i>RSC Advances</i> , 2015 , 5, 103218-103228	3.7	8
23	Effect of a macromolecular- or bio-fouling layer on membrane distillation. <i>Journal of Membrane Science</i> , 2014 , 456, 66-76	9.6	37
22	Elutriation and Species Segregation Characteristics of Polydisperse Mixtures of Group B Particles in a dilute CFB Riser. <i>AICHE Journal</i> , 2013 , 59, 84-95	3.6	35
21	Particle cluster dynamics during fluidization. Chemical Engineering Science, 2013, 100, 39-51	4.4	48
20	Reverse core-annular flow of Geldart Group B particles in risers. <i>Powder Technology</i> , 2012 , 221, 1-12	5.2	26
19	Analyzing the Minimum Entrainment Velocity of Ternary Particle Mixtures in Horizontal Pneumatic Transport. <i>Industrial & Discounty Chemistry Research</i> , 2012 , 51, 5626-5632	3.9	7
18	Cluster characteristics of Geldart group B particles in a pilot-scale CFB riser. II. Polydisperse systems. <i>Chemical Engineering Science</i> , 2012 , 68, 82-93	4.4	61
17	Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser. I. Monodisperse systems. <i>Chemical Engineering Science</i> , 2012 , 68, 72-81	4.4	79
16	Impact of material property and operating conditions on mass flux profiles of monodisperse and polydisperse Group B particles in a CFB riser. <i>Powder Technology</i> , 2011 , 214, 89-98	5.2	30
15	Cluster characteristics of continuous size distributions and binary mixtures of Group B particles in dilute riser flow. <i>Chemical Engineering Journal</i> , 2011 , 178, 348-358	14.7	41
14	Species segregation of binary mixtures and a continuous size distribution of Group B particles in riser flow. <i>Chemical Engineering Science</i> , 2011 , 66, 4595-4604	4.4	49

13	Link between bubbling and segregation patterns in gas-fluidized beds with continuous size distributions. <i>AICHE Journal</i> , 2011 , 57, 3003-3011	3.6	39
12	Effects of binary particle size distribution on minimum pick-up velocity in pneumatic conveying. <i>Powder Technology</i> , 2011 , 208, 166-174	5.2	23
11	Axial segregation in bubbling gas-fluidized beds with Gaussian and lognormal distributions of Geldart Group B particles. <i>AICHE Journal</i> , 2010 , 56, 3049-3061	3.6	51
10	Modeling fluidparticle interaction in dilute-phase turbulent liquidparticle flow simulation. <i>Particuology</i> , 2010 , 8, 150-160	2.8	10
9	Comparative performance of concentration and temperature controlled batch crystallizations. Journal of Process Control, 2008 , 18, 399-407	3.9	133
8	Automated In-line Technique Using FBRM to Achieve Consistent Product Quality in Cooling Crystallization. <i>Crystal Growth and Design</i> , 2007 , 7, 1416-1422	3.5	45
7	Comparison between Open-Loop Temperature Control and Closed-Loop Supersaturation Control for Cooling Crystallization of Glycine. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 830-83	88 ^{3.9}	28
6	Recent Advances in Crystallization control. Chemical Engineering Research and Design, 2007, 85, 893-90	5 5.5	105
5	Stable polymorphs: difficult to make and difficult to predict. CrystEngComm, 2007, 9, 128	3.3	57
4	First-principles and direct design approaches for the control of pharmaceutical crystallization. Journal of Process Control, 2005 , 15, 493-504	3.9	246
3	Membrane filtration of dextran solutions with water and formamide as solvent. <i>Separation Science and Technology</i> ,1-19	2.5	
2	Investigation of SurfactantMembrane Interaction Using Molecular Dynamics Simulation with Umbrella Sampling. <i>ACS ES&T Engineering</i> ,		3
1	Nucleation of water clusters on functionalised graphite with kinetic Monte Carlo scheme. <i>Molecular Simulation</i> ,1-12	2	