Marcel Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5555369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complementary mechanisms of modulation of spontaneous phasic contractions by the gaseous signalling molecules NO, H ₂ S, HNO and the polysulfide Na ₂ S ₃ in the rat colon. Journal of Basic and Clinical Physiology and Pharmacology, 2023, 34, 495-507.	0.7	3
2	Different responses of the blockade of the P2Y1 receptor with BPTU in human and porcine intestinal tissues and in cell cultures. Neurogastroenterology and Motility, 2021, 33, e14101.	1.6	3
3	Rational Design of Photochromic Analogues of Tricyclic Drugs. Journal of Medicinal Chemistry, 2021, 64, 9259-9270.	2.9	9
4	The asymmetric innervation of the circular and longitudinal muscle of the mouse colon differently modulates myogenic slow phasic contractions. Neurogastroenterology and Motility, 2020, 32, e13778.	1.6	10
5	Mechanisms Associated to Nitroxyl (HNO)-Induced Relaxation in the Intestinal Smooth Muscle. Frontiers in Physiology, 2020, 11, 438.	1.3	6
6	First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 559-579.	8.2	108
7	Diadenosine tetraphosphate activates P2Y1 receptors that cause smooth muscle relaxation in the mouse colon. European Journal of Pharmacology, 2019, 855, 160-166.	1.7	5
8	Evidence for metabotropic function of epithelial nicotinic cholinergic receptors in rat colon. British Journal of Pharmacology, 2019, 176, 1328-1340.	2.7	5
9	Functional neuromuscular impairment in severe intestinal dysmotility. Neurogastroenterology and Motility, 2018, 30, e13458.	1.6	9
10	Hydrogen sulphide as a signalling molecule regulating physiopathological processes in gastrointestinal motility. British Journal of Pharmacology, 2017, 174, 2805-2817.	2.7	33
11	Is the muscular tone of the internal anal sphincter a property of the syncytium?. Journal of Physiology, 2017, 595, 1853-1854.	1.3	1
12	A weakly acidic solution containing deoxycholic acid induces esophageal epithelial apoptosis and impairs integrity in an in vivo perfusion rabbit model. American Journal of Physiology - Renal Physiology, 2016, 310, G487-G496.	1.6	18
13	BPTU, an allosteric antagonist of P2Y1 receptor, blocks nerve mediated inhibitory neuromuscular responses in the gastrointestinal tract of rodents. Neuropharmacology, 2016, 110, 376-385.	2.0	10
14	Inverse gradient of nitrergic and purinergic inhibitory cotransmission in the mouse colon. Acta Physiologica, 2016, 216, 120-131.	1.8	17
15	P2Y1 receptors mediate purinergic relaxation in the equine pelvic flexure. Veterinary Journal, 2016, 209, 74-81.	0.6	2
16	Activation of the Prostaglandin E2 receptor <scp>EP</scp> 2 prevents house dust miteâ€induced airway hyperresponsiveness and inflammation by restraining mast cells' activity. Clinical and Experimental Allergy, 2015, 45, 1590-1600.	1.4	29
17	Plateletâ€derived growth factor receptorâ€Î±â€positive cells: new players in nerveâ€mediated purinergic responses in the colon. Journal of Physiology, 2015, 593, 1765-1766.	1.3	7
18	Enteric motor pattern generators involve both myogenic and neurogenic mechanisms in the human colon. Frontiers in Physiology, 2015, 6, 205.	1.3	13

#	Article	IF	CITATIONS
19	Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility. Pharmacological Research, 2015, 93, 52-63.	3.1	32
20	Pharmacodynamics of TRPV1 Agonists in a Bioassay Using Human PC-3 Cells. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	14
21	α,β-meATP mimics the effects of the purinergic neurotransmitter in the human and rat colon. European Journal of Pharmacology, 2014, 740, 442-454.	1.7	13
22	EP2 and EP4 receptors mediate PGE2 induced relaxation in murine colonic circular muscle: Pharmacological characterization. Pharmacological Research, 2014, 90, 76-86.	3.1	16
23	Colonic smooth muscle cells and colonic motility patterns as a target for irritable bowel syndrome therapy: mechanisms of action of otilonium bromide. Therapeutic Advances in Gastroenterology, 2014, 7, 156-166.	1.4	16
24	Purinergic neuromuscular transmission in the gastrointestinal tract; functional basis for future clinical and pharmacological studies. British Journal of Pharmacology, 2014, 171, 4360-4375.	2.7	36
25	Interplay between myogenic pacemakers and enteric neurons determine distinct motor patterns in the rat colon. Neurogastroenterology and Motility, 2014, 26, 1508-1512.	1.6	18
26	Nitrergic and purinergic mechanisms evoke inhibitory neuromuscular transmission in the human small intestine. Neurogastroenterology and Motility, 2014, 26, 419-429.	1.6	32
27	Differential functional role of purinergic and nitrergic inhibitory cotransmitters in human colonic relaxation. Acta Physiologica, 2014, 212, 293-305.	1.8	27
28	Interstitial cells of Cajal mediate nitrergic inhibitory neurotransmission in the murine gastrointestinal tract. American Journal of Physiology - Renal Physiology, 2014, 307, G98-G106.	1.6	50
29	Dynamics of inhibitory co-transmission, membrane potential and pacemaker activity determine neuromyogenic function in the rat colon. Pflugers Archiv European Journal of Physiology, 2014, 466, 2305-2321.	1.3	21
30	In vitro motor patterns and electrophysiological changes in patients with colonic diverticular disease. International Journal of Colorectal Disease, 2013, 28, 1413-1422.	1.0	19
31	Mechanisms of action of otilonium bromide (<scp>OB</scp>) in human cultured smooth muscle cells and rat colonic strips. Neurogastroenterology and Motility, 2013, 25, e803-12.	1.6	15
32	Effects of hydrogen sulphide on motility patterns in the rat colon. British Journal of Pharmacology, 2013, 169, 34-50.	2.7	28
33	P2Y ₁ knockout mice lack purinergic neuromuscular transmission in the antrum and cecum. Neurogastroenterology and Motility, 2013, 25, e170-82.	1.6	34
34	Relative contribution of SKCa and TREK1 channels in purinergic and nitrergic neuromuscular transmission in the rat colon. American Journal of Physiology - Renal Physiology, 2012, 303, G412-G423.	1.6	25
35	Purinergic neuromuscular transmission is absent in the colon of P2Y ₁ knocked out mice. Journal of Physiology, 2012, 590, 1943-1956.	1.3	78
36	Two Independent Networks of Interstitial Cells of Cajal Work Cooperatively with the Enteric Nervous System to Create Colonic Motor Patterns. Frontiers in Neuroscience, 2011, 5, 93.	1.4	90

#	Article	IF	CITATIONS
37	Specific and complementary roles for nitric oxide and ATP in the inhibitory motor pathways to rat internal anal sphincter. Neurogastroenterology and Motility, 2011, 23, e11-e25.	1.6	29
38	Pharmacological characterization of purinergic inhibitory neuromuscular transmission in the human colon. Neurogastroenterology and Motility, 2011, 23, 792-e338.	1.6	47
39	Morphofunctional changes underlying intestinal dysmotility in diabetic RIP-I/hIFNβ transgenic mice. International Journal of Experimental Pathology, 2011, 92, 400-412.	0.6	39
40	Effects of inhibitors of hydrogen sulphide synthesis on rat colonic motility. British Journal of Pharmacology, 2011, 164, 485-498.	2.7	54
41	Role of Peg and Socket Junctions in Stretch Coupling in Intestinal Smooth Muscle. Anatomical Record, 2011, 294, 929-930.	0.8	Ο
42	Evaluation of oesophageal mucosa integrity by the intraluminal impedance technique. Gut, 2011, 60, 885-892.	6.1	226
43	Regional functional specialization and inhibitory nitrergic and nonnitrergic coneurotransmission in the human esophagus. American Journal of Physiology - Renal Physiology, 2011, 300, G782-G794.	1.6	23
44	Effect of otilonium bromide on contractile patterns in the human sigmoid colon. Neurogastroenterology and Motility, 2010, 22, e180-e191.	1.6	26
45	Hydrogen sulfide as a signaling molecule in the enteric nervous system. Neurogastroenterology and Motility, 2010, 22, 1149-1153.	1.6	26
46	Purinergic and nitrergic neuromuscular transmission mediates spontaneous neuronal activity in the rat colon. American Journal of Physiology - Renal Physiology, 2010, 299, G158-G169.	1.6	56
47	T1763 Hydroxylamine, a Putative Inhibitor of H2S Synthesis, Causes NO-Like Effects in the Rat Colon. Gastroenterology, 2010, 138, S-573.	0.6	1
48	lgf1r ⁺ /CD34 ⁺ immature ICC are putative adult progenitor cells, identified ultrastructurally as fibroblastâ€like ICC in Ws/Ws rat colon. Journal of Cellular and Molecular Medicine, 2009, 13, 3528-3540.	1.6	17
49	P2Y ₁ receptors mediate inhibitory neuromuscular transmission in the rat colon. British Journal of Pharmacology, 2009, 158, 1641-1652.	2.7	64
50	A Comparative Study of Structure and Function of the Longitudinal Muscle of the Anal Canal and the Internal Anal Sphincter in Pigs. Diseases of the Colon and Rectum, 2009, 52, 1902-1911.	0.7	6
51	The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cellular and Molecular Life Sciences, 2008, 65, 324-337.	2.4	80
52	Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon <i>in vitro</i> . British Journal of Pharmacology, 2008, 155, 1043-1055.	2.7	51
53	The gaseous mediator, hydrogen sulphide, inhibits <i>in vitro</i> motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterology and Motility, 2008, 20, 1306-1316.	1.6	124
54	Purinergic and nitrergic junction potential in the human colon. American Journal of Physiology - Renal Physiology, 2008, 295, G522-G533.	1.6	67

#	Article	IF	CITATIONS
55	Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats. American Journal of Physiology - Renal Physiology, 2007, 292, G1499-G1510.	1.6	60
56	P2Y1receptors mediate inhibitory neuromuscular transmission and enteric neuronal activation in small intestine. Neurogastroenterology and Motility, 2007, 20, 071018041753004-???.	1.6	44
57	Interstitial cells of Cajal and neuromuscular transmission in the rat lower oesophageal sphincter. Neurogastroenterology and Motility, 2007, 19, 484-496.	1.6	39
58	P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. American Journal of Physiology - Renal Physiology, 2006, 291, G584-G594.	1.6	120
59	Alterations in intestinal contractility during inflammation are caused by both smooth muscle damage and specific receptor-mediated mechanisms. Croatian Medical Journal, 2006, 47, 318-26.	0.2	16
60	Motility patterns and distribution of interstitial cells of Cajal and nitrergic neurons in the proximal, mid- and distal-colon of the rat. Neurogastroenterology and Motility, 2005, 17, 133-147.	1.6	65
61	Effect of 4-aminopyridine (4-AP) on the spontaneous activity and neuromuscular junction in the rat colon. Pharmacological Research, 2005, 52, 447-456.	3.1	4
62	Otilonium bromide inhibits muscle contractions via L-type calcium channels in the rat colon. Neurogastroenterology and Motility, 2004, 16, 175-183.	1.6	17
63	Changes in the inhibitory responses to electrical field stimulation of intestinal smooth muscle from Trichinella spiralis infected rats. Life Sciences, 2002, 71, 3121-3136.	2.0	11
64	Changes in electrophysiological properties in the prostatic portion of vas deferens from spontaneously hypertensive rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 425-430.	1.4	4
65	Actions of NO donors and endogenous nitrergic transmitter on the longitudinal muscle of rat ileum in vitro. Life Sciences, 2001, 69, 1143-1154.	2.0	19
66	Evidence supporting presence of two pacemakers in rat colon. American Journal of Physiology - Renal Physiology, 2001, 281, G255-G266.	1.6	91
67	Electrical and mechanical effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide in the rat colon involve different mechanisms. European Journal of Pharmacology, 2000, 389, 217-224.	1.7	15
68	Lack of effect of nitric oxide on KCl, acetylcholine and substance P induced contractions in ileal longitudinal muscle of the rat. Life Sciences, 2000, 67, 531-541.	2.0	13
69	Slow waves in circular muscle of porcine ileum: structural and electrophysiological studies. American Journal of Physiology - Renal Physiology, 1999, 276, G393-G406.	1.6	18
70	Neural modulation of the cyclic electrical and mechanical activity in the rat colonic circular muscle: putative role of ATP and NO. British Journal of Pharmacology, 1999, 126, 883-892.	2.7	65
71	Evidence supporting a role for ATP as non-adrenergic noncholinergic inhibitory transmitter in the porcine ileum. Life Sciences, 1998, 62, 1303-1315.	2.0	28
72	Mucosal mast cells are involved in CCK disruption of MMC in the rat intestine. American Journal of Physiology - Renal Physiology, 1998, 275, G63-G67.	1.6	12

#	Article	IF	CITATIONS
73	Influence of nitric oxide and vasoactive intestinal peptide on the spontaneous and triggered electrical and mechanical activities of the canine ileum. Canadian Journal of Physiology and Pharmacology, 1997, 75, 383-397.	0.7	28
74	Effect of different calcium channel blockers on inhibitory junction potentials and slow waves in porcine ileum. Life Sciences, 1997, 60, 883-892.	2.0	18
75	Rhythmic oscillating complexes in gastrointestinal tract of chickens: a role for motilin. American Journal of Physiology - Renal Physiology, 1997, 272, G916-G922.	1.6	5
76	Influence of nitric oxide and vasoactive intestinal peptide on the spontaneous and triggered electrical and mechanical activities of the canine ileum. Canadian Journal of Physiology and Pharmacology, 1997, 75, 383-97.	0.7	5
77	Non-adrenergic, non-cholinergic inhibitory junction potential in rat colonic circular muscle is partly sensitive to I‰-conotoxin GVIA and resistant to L-, P- or Q-type calcium channel blockers. Neuroscience Letters, 1996, 210, 91-94.	1.0	9
78	Ca2+ role in myogenic and neurogenic activities of canine ileum circular muscle. American Journal of Physiology - Renal Physiology, 1996, 271, G1053-G1066.	1.6	9
79	Heterogeneity in electrical activity of the canine ileal circular muscle: interaction of two pacemakers. Neurogastroenterology and Motility, 1996, 8, 339-349.	1.6	34
80	Mechanism of action of somatostatin on the canine ileal circular muscle. American Journal of Physiology - Renal Physiology, 1995, 269, G22-G28.	1.6	2
81	Intraluminal lipids modulate avian gastrointestinal motility. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1995, 269, R445-R452.	0.9	10
82	ls nitric oxide the final mediator regulating the migrating myoelectric complex cycle?. American Journal of Physiology - Renal Physiology, 1995, 268, G207-G214.	1.6	29
83	Modulation of the Migrating Myoelectric Complexes by Cholecystokinin and Gastrin in the Gastrointestinal Tract of Chickens. Poultry Science, 1995, 74, 563-576.	1.5	9
84	Rhythmic oscillating complex: characterization, induction, and relationship to MMC in chickens. American Journal of Physiology - Renal Physiology, 1994, 266, G585-G595.	1.6	6
85	Role of CCK in the Physiological Control of Gastroduodenal and Intestinal Motility in Chickens. Annals of the New York Academy of Sciences, 1994, 713, 413-416.	1.8	0
86	Effects of cholecystokinin and gastrin on gastroduodenal motility and coordination in chickens. Life Sciences, 1993, 52, 191-198.	2.0	28
87	Immunohistochemical Differentiation of Gastrin and Cholecystokinin in Gastrointestinal Tract of Chickens. Poultry Science, 1993, 72, 2328-2336.	1.5	17
88	In vivo modulation of gastrointestinal motor activity by Met-enkephalin, morphine and enkephalin analogs in chickens. Regulatory Peptides, 1993, 44, 71-83.	1.9	7
89	Functional consequences of chronic implantation of electrodes for electromyographic studies in the gastrointestinal tract of chickens. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1993, 101, 47-51.	0.1	2
90	A Method of Analysis of the Electrical Activity of the Proximal Gastrointestinal Tract of the Chicken. Poultry Science, 1992, 71, 1531-1539.	1.5	8

#	Article	IF	CITATIONS
91	Opioid-induction of migrating motor activity in chickens. Life Sciences, 1992, 50, 465-472.	2.0	5
92	Gastrin-CCK actions on the migrating myoelectric complexes (MMC) in the chicken. Regulatory Peptides, 1992, 40, 204.	1.9	1
93	Inhibitory effects of neuropeptide Y (NPY) on CRF and stress-induced cecal motor response in rats. Life Sciences, 1990, 47, 205-211.	2.0	35
94	Age Influence on Digestive Transit Time of Particulate and Soluble Markers in Broiler Chickens. Poultry Science, 1989, 68, 185-189.	1.5	33
95	FACTORS DETERMINING GASTkOINTESTINAL TRANSIT TIME OF SEVERAL MARKERS IN THE DOMESTIC FOWL. Quarterly Journal of Experimental Physiology (Cambridge, England), 1989, 74, 867-874.	1.0	47
96	STUDY OF THE RATE OF PASSAGE OF FOOD WITH CHROMIUMâ€MORDANTED PLANT CELLS IN CHICKENS (<i>GALLUS GALLUS</i>). Quarterly Journal of Experimental Physiology (Cambridge, England), 1987, 72, 251-259.	1.0	36