
Bobby J Cherayil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5555167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RXRα Regulates the Development of Resident Tissue Macrophages. ImmunoHorizons, 2022, 6, 366-372.	1.8	5
2	The YrbE phospholipid transporter of <i>Salmonella enterica</i> serovar Typhi regulates the expression of flagellin and influences motility, adhesion and induction of epithelial inflammatory responses. Gut Microbes, 2020, 11, 526-538.	9.8	12
3	Intestinal microbes influence development of thymic lymphocytes in early life. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2570-2578.	7.1	65
4	Spheres of Influence: Insights into Salmonella Pathogenesis from Intestinal Organoids. Microorganisms, 2020, 8, 504.	3.6	18
5	The commensal bacterium Bacteroides fragilis downâ€regulates ferroportin expression and alters iron homeostasis in macrophages. Journal of Leukocyte Biology, 2019, 106, 1079-1088.	3.3	8
6	Serum siderocalin levels in patients with tuberculosis and HIV infection. International Journal of Infectious Diseases, 2019, 85, 132-134.	3.3	6
7	Iron and inflammation – the gut reaction. Metallomics, 2017, 9, 101-111.	2.4	29
8	Antibiotic Treatment Induces Long-lasting Changes in the Fecal Microbiota that Protect Against Colitis. Inflammatory Bowel Diseases, 2016, 22, 2328-2340.	1.9	20
9	Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability. PLoS ONE, 2016, 11, e0160937.	2.5	14
10	Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by foodâ€borne bacterial pathogens. European Journal of Immunology, 2015, 45, 2553-2567.	2.9	56
11	Intestinal Inflammation Leads to a Long-lasting Increase in Resistance to Systemic Salmonellosis that Requires Macrophages But Not B or T Lymphocytes at the Time of Pathogen Challenge. Inflammatory Bowel Diseases, 2015, 21, 2758-2765.	1.9	1
12	Commensal Bacteria-induced Interleukin 1β (IL-1β) Secreted by Macrophages Up-regulates Hepcidin Expression in Hepatocytes by Activating the Bone Morphogenetic Protein Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 30637-30647.	3.4	37
13	Pathophysiology of Iron Homeostasis during Inflammatory States. Journal of Pediatrics, 2015, 167, S15-S19.	1.8	16
14	Effect of Human Immunodeficiency Virus Infection on Plasma Bactericidal Activity against Salmonella enterica Serovar Typhimurium. Vaccine Journal, 2014, 21, 1437-1442.	3.1	6
15	Intestinal Inflammation Modulates Expression of the Iron-Regulating Hormone Hepcidin Depending on Erythropoietic Activity and the Commensal Microbiota. Journal of Immunology, 2014, 193, 1398-1407.	0.8	40
16	Response to Comment on "Intestinal Inflammation Modulates Expression of the Iron-Regulating Hormone Hepcidin Depending on Erythropoietic Activity and the Commensal Microbiota― Journal of Immunology, 2014, 193, 5763.2-5763.	0.8	0
17	Serum-induced up-regulation of hepcidin expression involves the bone morphogenetic protein signaling pathway. Biochemical and Biophysical Research Communications, 2013, 441, 383-386.	2.1	11
18	Role of Antilipopolysaccharide Antibodies in Serum Bactericidal Activity against Salmonella enterica Serovar Typhimurium in Healthy Adults and Children in the United States. Vaccine Journal, 2013, 20, 1491-1498.	3.1	51

BOBBY J CHERAYIL

#	Article	IF	CITATIONS
19	Helminth Infection Impairs Autophagy-Mediated Killing of Bacterial Enteropathogens by Macrophages. Journal of Immunology, 2012, 189, 1459-1466.	0.8	38
20	The bone morphogenetic protein–hepcidin axis as a therapeutic target in inflammatory bowel disease. Inflammatory Bowel Diseases, 2012, 18, 112-119.	1.9	55
21	Tumor Necrosis Factor α Inhibits Expression of the Iron Regulating Hormone Hepcidin in Murine Models of Innate Colitis. PLoS ONE, 2012, 7, e38136.	2.5	32
22	The role of iron in the immune response to bacterial infection. Immunologic Research, 2011, 50, 1-9.	2.9	140
23	Iron and intestinal immunity. Current Opinion in Gastroenterology, 2011, 27, 523-528.	2.3	35
24	Regulation of Lipopolysaccharide-Induced Translation of Tumor Necrosis Factor-Alpha by the Toll-Like Receptor 4 Adaptor Protein TRAM. Journal of Innate Immunity, 2011, 3, 437-446.	3.8	20
25	Iron and Immunity: Immunological Consequences of Iron Deficiency and Overload. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 407-415.	2.3	124
26	Siderocalin inhibits the intracellular replication ofMycobacterium tuberculosisin macrophages. FEMS Immunology and Medical Microbiology, 2010, 58, 138-145.	2.7	35
27	Role of Ferroportin in Macrophage-Mediated Immunity. Infection and Immunity, 2010, 78, 5099-5106.	2.2	60
28	Cross-talk between iron homeostasis and intestinal inflammation. Gut Microbes, 2010, 1, 65-69.	9.8	8
29	Ironing Out the Wrinkles in Host Defense: Interactions between Iron Homeostasis and Innate Immunity. Journal of Innate Immunity, 2009, 1, 455-464.	3.8	53
30	Indoleamine 2,3-dioxygenase in intestinal immunity and inflammation. Inflammatory Bowel Diseases, 2009, 15, 1391-1396.	1.9	55
31	Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. Journal of Clinical Investigation, 2009, 119, 3322-8.	8.2	135
32	Attenuated Inflammatory Responses in Hemochromatosis Reveal a Role for Iron in the Regulation of Macrophage Cytokine Translation. Journal of Immunology, 2008, 181, 2723-2731.	0.8	141
33	Deficiency of Indoleamine 2,3-Dioxygenase Enhances Commensal-Induced Antibody Responses and Protects against <i>Citrobacter rodentium</i> -Induced Colitis. Infection and Immunity, 2008, 76, 3045-3053.	2.2	74
34	The Iron Efflux Protein Ferroportin Regulates the Intracellular Growth of <i>Salmonella enterica</i> . Infection and Immunity, 2006, 74, 3065-3067.	2.2	137
35	Developmentally Regulated Intestinal Expression of IFN-γ and Its Target Genes and the Age-Specific Response to Enteric <i>Salmonella</i> Infection. Journal of Immunology, 2005, 175, 1127-1136.	0.8	98
36	Cooperative Interactions between Flagellin and SopE2 in the Epithelial Interleukin-8 Response to Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2004, 72, 5052-5062.	2.2	54

BOBBY J CHERAYIL

#	Article	IF	CITATIONS
37	Developmentally regulated lκB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7404-7408.	7.1	203
38	Toll-like receptor 4 mutation impairs the macrophage TNFα response to peptidoglycan. Biochemical and Biophysical Research Communications, 2004, 325, 91-96.	2.1	6
39	Role of Toll-Like Receptor 4 in Macrophage Activation and Tolerance during <i>Salmonella enterica</i> Serovar Typhimurium Infection. Infection and Immunity, 2003, 71, 4873-4882.	2.2	46
40	How not to get bugged by bugs: mechanisms of cellular tolerance to microorganisms. Current Opinion in Gastroenterology, 2003, 19, 572-577.	2.3	8
41	Inducible nitric oxide synthase and Salmonella infection. Microbes and Infection, 2001, 3, 771-776.	1.9	36
42	Salmonella enterica Serovar Typhimurium-Dependent Regulation of Inducible Nitric Oxide Synthase Expression in Macrophages by Invasins SipB, SipC, and SipD and Effector SopE2. Infection and Immunity, 2000, 68, 5567-5574.	2.2	41
43	NF-κB-dependent responses activated by bacterial–epithelial interactions. , 0, , 244-268.		0