Cristina Gambi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555508/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss. Current Biology, 2008, 18, 1-8.	3.9	641
2	Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE, 2010, 5, e11832.	2.5	321
3	The first metazoa living in permanently anoxic conditions. BMC Biology, 2010, 8, 30.	3.8	262
4	The contribution of deepâ€sea macrohabitat heterogeneity to global nematode diversity. Marine Ecology, 2010, 31, 6-20.	1.1	208
5	Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodiversity and Conservation, 2010, 19, 153-167.	2.6	163
6	Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 843-857.	1.4	137
7	Nematode community response to fish-farm impact in the western Mediterranean. Environmental Pollution, 2002, 116, 203-214.	7.5	130
8	Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 103-117.	1.4	130
9	Deepâ€sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography, 2008, 31, 231-244.	4.5	100
10	Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): evidence from biochemical, microbial and meiofaunal indicators. Marine Pollution Bulletin, 2004, 49, 325-333.	5.0	93
11	Metazoan meiofauna in deep-sea canyons and adjacent open slopes: A large-scale comparison with focus on the rare taxa. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 420-433.	1.4	93
12	Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 2003, 26, 27-38.	0.7	91
13	Identifying Toxic Impacts of Metals Potentially Released during Deep-Sea Mining—A Synthesis of the Challenges to Quantifying Risk. Frontiers in Marine Science, 0, 4, .	2.5	84
14	a-, β-, γ-, δ- and ε-diversity of deep-sea nematodes in canyons and open slopes of Northeast Atlantic and Mediterranean margins. Marine Ecology - Progress Series, 2009, 396, 197-209.	1.9	81
15	Structural and functional response of meiofauna rocky assemblages to sewage pollution. Marine Pollution Bulletin, 2006, 52, 540-548.	5.0	79
16	Biodiversity and trophic structure of nematode assemblages in seagrass systems: evidence for a coupling with changes in food availability. Marine Biology, 2002, 141, 667-677.	1.5	74
17	Meiofauna of the Adriatic Sea: present knowledge and future perspectives. Chemistry and Ecology, 2010, 26, 45-63.	1.6	74
18	Meiofauna response to a dynamic river plume front. Marine Biology, 2000, 137, 359-370.	1.5	71

CRISTINA GAMBI

#	Article	IF	CITATIONS
19	Assessment of benthic trophic status of marine coastal ecosystems: Significance of meiofaunal rare taxa. Estuarine, Coastal and Shelf Science, 2011, 93, 420-430.	2.1	68
20	The Whittard Canyon – A case study of submarine canyon processes. Progress in Oceanography, 2016, 146, 38-57.	3.2	68
21	Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. Journal of Applied Ecology, 2020, 57, 1161-1179.	4.0	63
22	Deep-water scleractinian corals promote higher biodiversity in deep-sea meiofaunal assemblages along continental margins. Biological Conservation, 2010, 143, 1687-1700.	4.1	62
23	Trophic state, ecosystem efficiency and biodiversity of transitional aquatic ecosystems: analysis of environmental quality based on different benthic indicators. Chemistry and Ecology, 2007, 23, 505-515.	1.6	60
24	Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Marine Biology, 2007, 152, 339-350.	1.5	60
25	Organic matter composition, metazoan meiofauna and nematode biodiversity in Mediterranean deep-sea sediments. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 755-762.	1.4	59
26	Fish-farm impact on metazoan meiofauna in the Mediterranean Sea: Analysis of regional vs. habitat effects. Marine Environmental Research, 2010, 69, 38-47.	2.5	58
27	A multiple-scale analysis of metazoan meiofaunal distribution in the deep Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1117-1134.	1.4	57
28	Multiple human pressures in coastal habitats: variation of meiofaunal assemblages associated with sewage discharge in a post-industrial area. Science of the Total Environment, 2019, 655, 1218-1231.	8.0	54
29	Species richness, species turnover and functional diversity in nematodes of the deep <scp>M</scp> editerranean <scp>S</scp> ea: searching for drivers at different spatial scales. Global Ecology and Biogeography, 2014, 23, 24-39.	5.8	53
30	Trophic conditions and meiofaunal assemblages in the Bari Canyon and the adjacent open slope (Adriatic Sea). Chemistry and Ecology, 2008, 24, 101-109.	1.6	50
31	Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining. Environmental Pollution, 2017, 228, 169-178.	7.5	50
32	The deep sea: The new frontier for ecological restoration. Marine Policy, 2019, 108, 103642.	3.2	48
33	Exploring Benthic Biodiversity Patterns and Hot Spots on European Margin Slopes. Oceanography, 2009, 22, 16-25.	1.0	46
34	Influence of artificial reefs on the surrounding infauna: analysis of meiofauna. ICES Journal of Marine Science, 2002, 59, S356-S362.	2.5	45
35	Exo-enzymatic activities and dissolved organic pools in relation with mucilage development in the Northern Adriatic Sea. Science of the Total Environment, 2005, 353, 189-203.	8.0	44
36	Relationships between Meiofaunal Biodiversity and Prokaryotic Heterotrophic Production in Different Tropical Habitats and Oceanic Regions. PLoS ONE, 2014, 9, e91056.	2.5	44

CRISTINA GAMBI

#	Article	IF	CITATIONS
37	Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Marine Ecology - Progress Series, 2002, 234, 95-104.	1.9	44
38	Biodiversity response to experimental induced hypoxic-anoxic conditions in seagrass sediments. Biodiversity and Conservation, 2009, 18, 33-54.	2.6	43
39	The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biology, 2016, 14, 43.	3.8	43
40	Human activities and resultant pressures on key European marine habitats: An analysis of mapped resources. Marine Policy, 2018, 98, 1-10.	3.2	42
41	Functional response to food limitation can reduce the impact of global change in the deepâ€sea benthos. Global Ecology and Biogeography, 2017, 26, 1008-1021.	5.8	40
42	Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 92, 97-106.	1.4	38
43	<i>Spinoloricus cinziae</i> (Phylum Loricifera), a new species from a hypersaline anoxic deep basin in the Mediterranean Sea. Systematics and Biodiversity, 2014, 12, 489-502.	1.2	36
44	Habitat mapping in the European Seas - is it fit for purpose in the marine restoration agenda?. Marine Policy, 2019, 106, 103521.	3.2	31
45	Impact of historical contamination on meiofaunal assemblages: The case study of the Bagnoli-Coroglio Bay (southern Tyrrhenian Sea). Marine Environmental Research, 2020, 156, 104907.	2.5	31
46	Biodiversity and life strategies of deep-sea meiofauna and nematode assemblages in the Whittard Canyon (Celtic margin, NE Atlantic Ocean). Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 108, 13-22.	1.4	29
47	Habitat Features and Their Influence on the Restoration Potential of Marine Habitats in Europe. Frontiers in Marine Science, 2020, 7, .	2.5	27
48	Short-Term Impact of Clam Harvesting on Sediment Chemistry, Benthic Microbes and Meiofauna in the Goro Lagoon (Italy). Chemistry and Ecology, 2003, 19, 173-187.	1.6	26
49	Latitudinal, longitudinal and bathymetric patterns of abundance, biomass of metazoan meiofauna: importance of the rare taxa and anomalies in the deep Mediterranean Sea. Advances in Oceanography and Limnology, 2010, 1, 167.	0.6	26
50	Marine ecosystem restoration in a changing ocean. Restoration Ecology, 2021, 29, e13432.	2.9	23
51	Nematode assemblage response to fish-farm impact in vegetated (Posidonia oceanica) and non‑vegetated habitats. Aquaculture Environment Interactions, 2014, 5, 17-28.	1.8	23
52	Nematode diversity patterns at different spatial scales in bathyal sediments of the Mediterranean Sea. Biogeosciences, 2013, 10, 5465-5479.	3.3	20
53	Impact of Organic Loads and Environmental Gradients on Microphytobenthos and Meiofaunal Distribution in a Coastal Lagoon. Chemistry and Ecology, 2003, 19, 207-223.	1.6	19
54	Latitudinal, longitudinal and bathymetric patterns of abundance, biomass of metazoan meiofauna: importance of the rare taxa and anomalies in the deep Mediterranean Sea. Advances in Oceanography and Limnology, 2010, 1, 167-197.	0.6	17

CRISTINA GAMBI

#	Article	lF	CITATIONS
55	Restoration of <i>Cymodocea nodosa</i> seagrass meadows: efficiency and ecological implications. Restoration Ecology, 2021, 29, e13313.	2.9	17
56	Ecosystem effects of dense water formation on deep Mediterranean Sea ecosystems: an overview. Advances in Oceanography and Limnology, 2010, 1, 67-83.	0.6	16
57	Impact of historical sulfide mine tailings discharge on meiofaunal assemblages (Portmán Bay,) Tj ETQq1 1 0.78	34314 rgBT 8.0	Oyerlock 10
58	Ecosystem effects of dense water formation on deep Mediterranean Sea ecosystems: an overview. Advances in Oceanography and Limnology, 2010, 1, 67.	0.6	16
59	Impact of offshore gas platforms on the structural and functional biodiversity of nematodes. Marine Environmental Research, 2016, 115, 56-64.	2.5	13
60	Ecological assessment of anthropogenic impact in marine ecosystems: The case of Bagnoli Bay. Marine Environmental Research, 2020, 158, 104953.	2.5	13
61	Short-Term Impact Of Clam Harvesting On Sediment Chemistry, Benthic Microbes And Meiofauna In The Goro Lagoon (Italy). Chemistry and Ecology, 2003, 19, 173-187.	1.6	12
62	Case studies using nematode assemblage analysis in aquatic habitats , 2009, , 146-171.		9
63	Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 107, 48-58.	1.4	8
64	Impact of breakwater relocation on benthic biodiversity associated with seagrass meadows of northern Adriatic Sea. Rendiconti Lincei, 2018, 29, 571-581.	2.2	8
65	Biodiversity and distribution of meiofauna in the Gioia, Petrace and Dohrn Canyons (Tyrrhenian Sea). Progress in Oceanography, 2019, 171, 162-174.	3.2	7
66	Effects of antifouling booster biocide Irgarol 1051 on the structure of free living nematodes: a laboratory experiment. Environmental Sciences: Processes and Impacts, 2016, 18, 832-843.	3.5	6
67	The Paradox of an Unpolluted Coastal Site Facing a Chronically Contaminated Industrial Area. Frontiers in Marine Science, 2022, 8, .	2.5	6
68	Deep-sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography, 2008, .	4.5	5
69	Effects of Local Acidification on Benthic Communities at Shallow Hydrothermal Vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea). Biology, 2022, 11, 321.	2.8	5
70	Impact of hypersaline brines on benthic meio- and macrofaunal assemblages: A comparison from two desalination plants of the Mediterranean Sea. Desalination, 2022, 532, 115756.	8.2	5
71	Cosmopolitism, rareness and endemism in deep-sea marine nematodes. , 2022, 89, 653-665.		4
72	Impact of resuspended mine tailings on benthic biodiversity and ecosystem processes: The case study of Portmán Bay, Western Mediterranean Sea, Spain. Environmental Pollution, 2022, 301, 119021.	7.5	3

#	Article	IF	CITATIONS
73	Knowledge and implications of global change in the oceans for biology, ecology, and ecosystem services. , 0, , 84-108.		1
74	Marine Biology. Biodiversity and Functioning of Marine Ecosystems: Scientific Advancements and New Perspectives for Preserving Marine Life. , 2020, , 447-462.		1
75	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0