Wangxiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5554854/publications.pdf

Version: 2024-02-01

	840776		940533	
18	267	11	16	
papers	citations	h-index	g-index	
18	18	18	476	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Large-scale cellulose-assisted transfer of graphene toward industrial applications. Carbon, 2016, 110, 286-291.	10.3	38
2	Photoinduced Deadhesion of a Polymer Film Using a Photochromic Donor–Acceptor Stenhouse Adduct. Macromolecules, 2019, 52, 6311-6317.	4.8	27
3	Covalent Atomic Bridges Enable Unidirectional Enhancement of Electronic Transport in Aligned Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19315-19323.	8.0	27
4	Organometallic chemistry of graphene: Photochemical complexation of graphene with group 6 transition metals. Carbon, 2018, 129, 450-455.	10.3	22
5	Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons. Nanotechnology, 2017, 28, 255701.	2.6	21
6	High Modulation Speed, Depth, and Coloration Efficiency of Carbon Nanotube Thin Film Electrochromic Device Achieved by Counter Electrode Impedance Matching. Advanced Materials Interfaces, 2018, 5, 1800861.	3.7	19
7	Application of Organometallic Chemistry to the Electrical Interconnection of Graphene Nanoplatelets. Chemistry of Materials, 2016, 28, 2260-2266.	6.7	17
8	Molecular Crystal Microcapsules: Formation of Sealed Hollow Chambers via Surfactantâ€Mediated Growth. Angewandte Chemie - International Edition, 2020, 59, 23035-23039.	13.8	17
9	Evolution of cellulose acetate to monolayer graphene. Carbon, 2021, 174, 24-35.	10.3	15
10	Reversible Adhesion Switching Using Spiropyran Photoisomerization in a High Glass Transition Temperature Polymer. Macromolecules, 2021, 54, 9319-9326.	4.8	15
11	Protection of Molecular Microcrystals by Encapsulation under Single-Layer Graphene. ACS Omega, 2018, 3, 8129-8134.	3.5	14
12	Shaping Organic Microcrystals Using Focused Ion Beam Milling. Crystal Growth and Design, 2020, 20, 1583-1589.	3.0	12
13	Effect of constructive rehybridization on transverse conductivity of aligned single-walled carbon nanotube films. Materials Today, 2018, 21, 937-943.	14.2	10
14	Molecular Crystal Microcapsules: Formation of Sealed Hollow Chambers via Surfactantâ€Mediated Growth. Angewandte Chemie, 2020, 132, 23235-23239.	2.0	7
15	(Invited) Effect of Covalent Chemistry on the Electronic Structure and Properties of the Carbon Allotropes. ECS Transactions, 2017, 77, 569-579.	0.5	2
16	Patterning Submicron Photomechanical Features into Single Diarylethene Crystals Using Electron Beam Lithography. Nanoscale Horizons, 0, , .	8.0	2
17	Hexagonal Boron Nitride Encapsulation of Organic Microcrystals and Energy-Transfer Dynamics. Journal of Physical Chemistry C, 2020, 124, 21170-21177.	3.1	1
18	Photomechanical Structures Based on Porous Alumina Templates Filled with 9-Methylanthracene Nanowires. Crystals, 2022, 12, 808.	2.2	1