
Lawrence L Latour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association of Multiple Passes during Mechanical Thrombectomy with Incomplete Reperfusion and Lesion Growth. Cerebrovascular Diseases, 2022, 51, 394-402.	0.8	6
2	Prevalence of Imaging Targets in Patients With Minor Stroke Selected for IV tPA Treatment Using MRI. Neurology, 2021, 96, e1301-e1311.	1.5	5
3	Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nature Neuroscience, 2021, 24, 245-258.	7.1	64
4	Head injury and 25â€year risk of dementia. Alzheimer's and Dementia, 2021, 17, 1432-1441.	0.4	34
5	Fluid-Attenuated Inversion Recovery Hyperintense Ischemic Stroke Predicts Less Favorable 90-Day Outcome after Intravenous Thrombolysis. Cerebrovascular Diseases, 2021, 50, 738-745.	0.8	4
6	Cytotoxic edema associated with hemorrhage predicts poor outcome after traumatic brain injury. Journal of Neurotrauma, 2021, 38, 3107-3118.	1.7	5
7	Subarachnoid Hemorrhage and Cerebral Perfusion Are Associated with Brain Volume Decrease in a Cohort of Predominantly Mild Traumatic Brain Injury Patients. Journal of Neurotrauma, 2020, 37, 600-607.	1.7	2
8	Nonhomogeneous Gadolinium Retention in the Cerebral Cortex after Intravenous Administration of Gadolinium-based Contrast Agent in Rats and Humans. Radiology, 2020, 294, 377-385.	3.6	19
9	Meningeal blood–brain barrier disruption in acute traumatic brain injury. Brain Communications, 2020, 2, fcaa143.	1.5	20
10	Routine use of FLAIR-negative MRI in the treatment of unknown onset stroke. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105093.	0.7	4
11	Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data. Lancet, The, 2020, 396, 1574-1584.	6.3	107
12	Inflammatory Cytokines Associate With Neuroimaging After Acute Mild Traumatic Brain Injury. Frontiers in Neurology, 2020, 11, 348.	1.1	40
13	Traumatic microbleeds persist for up to five years following traumatic brain injury despite resolution of other acute findings on MRI. Brain Injury, 2020, 34, 775-783.	0.6	14
14	ÂÂÂÂÂComparison of T1-Post and FLAIR-Post MRI for identification of traumatic meningeal enhancement in traumatic brain injury patients. PLoS ONE, 2020, 15, e0234881.	1.1	7
15	Neuroimaging of Cerebral Small Vessel Disease and Age-Related Cognitive Changes. Frontiers in Aging Neuroscience, 2019, 11, 145.	1.7	41
16	Rapid Apparent Diffusion Coefficient Evolution After Early Revascularization. Stroke, 2019, 50, 2086-2092.	1.0	17
17	Traumatic microbleeds suggest vascular injury and predict disability in traumatic brain injury. Brain, 2019, 142, 3550-3564.	3.7	83
18	Circle of Willis anomalies in Turner syndrome: Absent A1 segment of the anterior cerebral artery. Birth Defects Research, 2019, 111, 1584-1588.	0.8	2

#	Article	IF	CITATIONS
19	Identifying perfusion deficits on CT perfusion images using temporal similarity perfusion (TSP) mapping. European Radiology, 2019, 29, 4198-4206.	2.3	0
20	Response by Luby et al to Letter Regarding Article, "Frequency of Blood-Brain Barrier Disruption Postendovascular Therapy and Multiple Thrombectomy Passes in Acute Ischemic Stroke Patients― Stroke, 2019, 50, e312.	1.0	0
21	MRI-based thrombolytic therapy in patients with acute ischemic stroke presenting with a low NIHSS. Neurology, 2019, 93, e1507-e1513.	1.5	18
22	Frequency of Blood-Brain Barrier Disruption Post-Endovascular Therapy and Multiple Thrombectomy Passes in Acute Ischemic Stroke Patients. Stroke, 2019, 50, 2241-2244.	1.0	32
23	Molecular signature of penumbra in acute ischemic stroke: a pilot transcriptomics study. Annals of Clinical and Translational Neurology, 2019, 6, 817-820.	1.7	5
24	Neuroimaging evolution of ischemia in men and women: an observational study. Annals of Clinical and Translational Neurology, 2019, 6, 575-585.	1.7	5
25	Association of Head Injury with Brain Amyloid Deposition: The ARIC-PET Study. Journal of Neurotrauma, 2019, 36, 2549-2557.	1.7	10
26	Changes in Plasma von Willebrand Factor and Cellular Fibronectin in MRI-Defined Traumatic Microvascular Injury. Frontiers in Neurology, 2019, 10, 246.	1.1	18
27	Discordance between Documented Criteria and Documented Diagnosis of Traumatic Brain Injury in the Emergency Department. Journal of Neurotrauma, 2019, 36, 1335-1342.	1.7	12
28	Intravenous thrombolysis in unwitnessed stroke onset: MR WITNESS trial results. Annals of Neurology, 2018, 83, 980-993.	2.8	110
29	Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nature Immunology, 2018, 19, 442-452.	7.0	101
30	Blood-ocular barrier disruption in patients with acute stroke. Neurology, 2018, 90, e915-e923.	1.5	25
31	An MRI Hyperintense Acute Reperfusion Marker Is Related to Elevated Peripheral Monocyte Count in Acute Ischemic Stroke. Journal of Neuroimaging, 2018, 28, 57-60.	1.0	20
32	Glial fibrillary acidic protein elevations relate to neuroimaging abnormalities after mild TBI. Neurology, 2018, 91, e1385-e1389.	1.5	110
33	Trauma-Specific Brain Abnormalities in Suspected Mild Traumatic Brain Injury Patients Identified in the First 48 Hours after Injury: A Blinded Magnetic Resonance Imaging Comparative Study Including Suspected Acute Minor Stroke Patients. Journal of Neurotrauma, 2017, 34, 23-30.	1.7	32
34	Attenuation of Myeloid-Specific TGF \hat{l}^2 Signaling Induces Inflammatory Cerebrovascular Disease and Stroke. Circulation Research, 2017, 121, 1360-1369.	2.0	23
35	Effects of increasing IV tPA-treated stroke mimic rates at CT-based centers on clinical outcomes. Neurology, 2017, 89, 343-348.	1.5	33
36	Differential Gene Expression Associated with Meningeal Injury in Acute Mild Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 853-860.	1.7	12

#	Article	IF	CITATIONS
37	Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke. PLoS ONE, 2017, 12, e0185552.	1.1	9
38	Cerebral Ischemia Increases Small Ubiquitin-Like Modifier Conjugation within Human Penumbral Tissue: Radiological–Pathological Correlation. Frontiers in Neurology, 2017, 8, 738.	1.1	10
39	Older Age Results in Differential Gene Expression after Mild Traumatic Brain Injury and Is Linked to Imaging Differences at Acute Follow-up. Frontiers in Aging Neuroscience, 2016, 8, 168.	1.7	22
40	Acute Stroke Imaging Research Roadmap III Imaging Selection and Outcomes in Acute Stroke Reperfusion Clinical Trials. Stroke, 2016, 47, 1389-1398.	1.0	88
41	Identification of Reversible Disruption of the Human Blood–Brain Barrier Following Acute Ischemia. Stroke, 2016, 47, 2405-2408.	1.0	61
42	Stroke Treatment Academic Industry Roundtable Recommendations for Individual Data Pooling Analyses in Stroke. Stroke, 2016, 47, 2154-2159.	1.0	13
43	Quantification of traumatic meningeal injury using dynamic contrast enhanced (DCE) fluid-attenuated inversion recovery (FLAIR) imaging. Proceedings of SPIE, 2016, , .	0.8	0
44	Multivariate Analysis of Traumatic Brain Injury: Development of an Assessment Score. Frontiers in Neurology, 2015, 6, 68.	1.1	38
45	Magnetic Resonance Imaging in Acute Ischemic Stroke Patients with Mild Symptoms: An Opportunity to Standardize Intravenous Thrombolysis. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 1832-1840.	0.7	7
46	Autoimmune Profiling Reveals Peroxiredoxin 6 as a Candidate Traumatic Brain Injury Biomarker. Journal of Neurotrauma, 2015, 32, 1805-1814.	1.7	34
47	Assessing Reperfusion With Whole-Brain Arterial Spin Labeling. Stroke, 2014, 45, 456-461.	1.0	27
48	Association Between Neurologic Improvement With Decline in Blood Pressure and Recanalization in Stroke. JAMA Neurology, 2014, 71, 1555.	4.5	10
49	Transcranial amelioration of inflammation and cell death after brain injury. Nature, 2014, 505, 223-228.	13.7	464
50	Predictors of Acute Stroke Mimics in 8187 Patients Referred to a Stroke Service. Journal of Stroke and Cerebrovascular Diseases, 2013, 22, e397-e403.	0.7	132
51	Blood-Brain Barrier Disruption after Cardiac Surgery. American Journal of Neuroradiology, 2013, 34, 518-523.	1.2	75
52	Negative Diffusion-Weighted Imaging After Intravenous Tissue-Type Plasminogen Activator is Rare and Unlikely to Indicate Averted Infarction. Stroke, 2013, 44, 1629-1634.	1.0	29
53	Combined Approach to Lysis Utilizing Eptifibatide and Recombinant Tissue Plasminogen Activator in Acute Ischemic Stroke–Enhanced Regimen Stroke Trial. Stroke, 2013, 44, 2381-2387.	1.0	88
54	Stroke Mismatch Volume with the Use of ABC/2 Is Equivalent to Planimetric Stroke Mismatch Volume. American Journal of Neuroradiology, 2013, 34, 1901-1907.	1.2	23

#	Article	IF	CITATIONS
55	Acute Stroke Imaging Research Roadmap II. Stroke, 2013, 44, 2628-2639.	1.0	192
56	Pseudocontinuous Arterial Spin Labeling Quantifies Relative Cerebral Blood Flow in Acute Stroke. Stroke, 2012, 43, 753-758.	1.0	41
57	Whole-Brain Arterial Spin Labeling Perfusion MRI in Patients With Acute Stroke. Stroke, 2012, 43, 1290-1294.	1.0	96
58	A Pragmatic Approach Using Magnetic Resonance Imaging to Treat Ischemic Strokes of Unknown Onset Time in a Thrombolytic Trial. Stroke, 2012, 43, 2331-2335.	1.0	43
59	Visual Perfusion–Diffusion Mismatch Is Equivalent to Quantitative Mismatch. Stroke, 2011, 42, 1010-1014.	1.0	18
60	Common data elements in radiologic imaging of traumatic brain injury. Journal of Magnetic Resonance Imaging, 2010, 32, 516-543.	1.9	139
61	Increased Plasma and Tissue MMP Levels are Associated with BCSFB and BBB Disruption Evident on Post-Contrast FLAIR after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1188-1199.	2.4	44
62	Blood–Brain Barrier Disruption in Humans Is Independently Associated With Increased Matrix Metalloproteinase-9. Stroke, 2010, 41, e123-8.	1.0	181
63	Common Data Elements in Radiologic Imaging of Traumatic Brain Injury. Archives of Physical Medicine and Rehabilitation, 2010, 91, 1661-1666.	0.5	214
64	Measurement of glutathione in normal volunteers and stroke patients at 3T using Jâ€difference spectroscopy with minimized subtraction errors. Journal of Magnetic Resonance Imaging, 2009, 30, 263-270.	1.9	37
65	Feridex Preloading Permits Tracking of CNS-Resident Macrophages after Transient Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1229-1239.	2.4	44
66	Nitrite Does Not Provide Additional Protection to Thrombolysis in a Rat Model of Stroke with Delayed Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 482-489.	2.4	17
67	Verification of Enhancement of the CSF Space, not Parenchyma, in Acute Stroke Patients with Early Blood—Brain Barrier Disruption. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 882-886.	2.4	33
68	The Boston Acute Stroke Imaging Scale: ready for use in clinical practice?. Nature Clinical Practice Neurology, 2008, 4, 592-593.	2.7	1
69	Thrombolytic Toxicity: Blood Brain Barrier Disruption in Human Ischemic Stroke. Cerebrovascular Diseases, 2008, 25, 338-343.	0.8	110
70	Establishing Final Infarct Volume. Stroke, 2008, 39, 2765-2768.	1.0	79
71	Reperfusion Half-Life. Stroke, 2008, 39, 2148-2150.	1.0	19
72	Reperfusion-Associated Hemorrhagic Transformation in SHR Rats. Stroke, 2008, 39, 3405-3410.	1.0	32

#	Article	IF	CITATIONS
73	Lesion Volume Change After Treatment With Tissue Plasminogen Activator Can Discriminate Clinical Responders From Nonresponders. Stroke, 2007, 38, 2919-2923.	1.0	29
74	Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet, The, 2007, 369, 293-298.	6.3	1,033
75	The association between neurological deficit in acute ischemic stroke and mean transit time. Neuroradiology, 2006, 48, 69-77.	1.1	29
76	Silent Ischemic Lesion Recurrence on Magnetic Resonance Imaging Predicts Subsequent Clinical Vascular Events. Archives of Neurology, 2006, 63, 1730.	4.9	52
77	Diagnostic and prognostic value of early MR Imaging vessel signs in hyperacute stroke patients imaged <3 hours and treated with recombinant tissue plasminogen activator. American Journal of Neuroradiology, 2005, 26, 618-24.	1.2	124
78	Comparison of MRI and CT for Detection of Acute Intracerebral Hemorrhage. JAMA - Journal of the American Medical Association, 2004, 292, 1823.	3.8	661
79	More Accurate Identification of Reversible Ischemic Injury in Human Stroke by Cerebrospinal Fluid Suppressed Diffusion-Weighted Imaging. Stroke, 2004, 35, 1100-1106.	1.0	32
80	Early magnetic resonance imaging findings in patients receiving tissue plasminogen activator predict outcome: Insights into the pathophysiology of acute stroke in the thrombolysis era. Annals of Neurology, 2004, 55, 105-112.	2.8	133
81	Early blood-brain barrier disruption in human focal brain ischemia. Annals of Neurology, 2004, 56, 468-477.	2.8	408
82	Evidence of Reperfusion Injury, Exacerbated by Thrombolytic Therapy, in Human Focal Brain Ischemia Using a Novel Imaging Marker of Early Blood-Brain Barrier Disruption. Stroke, 2004, 35, 2659-2661.	1.0	344
83	Early ischemic lesion recurrence within a week after acute ischemic stroke. Annals of Neurology, 2003, 54, 66-74.	2.8	160
84	Reversal of Perfusion and Diffusion Abnormalities After Intravenous Thrombolysis for a Lacunar Infarction. Journal of Neuroimaging, 2003, 13, 152-154.	1.0	30
85	Reversal of Perfusion and Diffusion Abnormalities After Intravenous Thrombolysis for a Lacunar Infarction. , 2003, 13, 152.		15
86	Cerebral spinal fluid contamination of the measurement of the apparent diffusion coefficient of water in acute stroke. Magnetic Resonance in Medicine, 2002, 48, 478-486.	1.9	57
87	Determination of the MRI contrast agent concentration time course in vivo following bolus injection: Effect of equilibrium transcytolemmal water exchange. Magnetic Resonance in Medicine, 2000, 44, 563-574.	1.9	199
88	A new design for a threeâ€channel surface gradient coil employing a threeâ€dimensional finite element model. Magnetic Resonance in Medicine, 1996, 35, 596-605.	1.9	9
89	The role of spreading depression in focal ischemia evaluated bv dffusion mapping. Annals of Neurology, 1996, 39, 308-318.	2.8	233
90	Effective Diffusion Times in Multiple-Pulse PFG Diffusion Measurements in Porous Media. Journal of Magnetic Resonance Series A, 1996, 121, 187-192.	1.6	37

#	Article	IF	CITATIONS
91	Severe Transient Hypoglycemia Causes Reversible Change in the Apparent Diffusion Coefficient of Water. Stroke, 1996, 27, 1648-1656.	1.0	102
92	Pore-Size Distributions and Tortuosity in Heterogeneous Porous Media. Journal of Magnetic Resonance Series A, 1995, 112, 83-91.	1.6	204
93	Pulsed-Field-Gradient NMR Measurements of Restricted Diffusion and the Return-to-the-Origin Probability. Journal of Magnetic Resonance Series A, 1995, 114, 47-58.	1.6	51
94	Spreading Waves of a Reduced Diffusion Coefficient of Water in Normal and Ischemic Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 179-187.	2.4	113
95	Time-dependent diffusion of water in a biological model system Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1229-1233.	3.3	469
96	Spreading waves of decreased diffusion coefficient lifter cortical stimulation in the rat brain. Magnetic Resonance in Medicine, 1994, 32, 189-198.	1.9	140
97	Restricted Diffusion in Sedimentary Rocks. Determination of Surface-Area-to-Volume Ratio and Surface Relaxivity. Journal of Magnetic Resonance Series A, 1994, 111, 169-178.	1.6	235
98	Diffusion measurement in sandstone core: NMR determination of surface-to-volume ratio and surface relaxivity. Magnetic Resonance Imaging, 1994, 12, 325-327.	1.0	54
99	Temperature Dependent Change of Apparent Diffusion Coefficient of Water in Normal and Ischemic Brain of Rats. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 383-390.	2.4	92
100	Time-Dependent Diffusion Coefficient of Fluids in Porous Media as a Probe of Surface-to-Volume Ratio. Journal of Magnetic Resonance Series A, 1993, 101, 342-346.	1.6	358
101	Improved PFG Stimulated-Echo Method for the Measurement of Diffusion in Inhomogeneous Fields. Journal of Magnetic Resonance Series B, 1993, 101, 72-77.	1.6	98
102	Nuclear magnetic resonance properties of rocks at elevated temperatures. Journal of Colloid and Interface Science, 1992, 150, 535-548.	5.0	70