Spiros Linardopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5554255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CCT245718, a dual FLT3/Aurora A inhibitor overcomes D835Y-mediated resistance to FLT3 inhibitors in acute myeloid leukaemia cells. British Journal of Cancer, 2021, 125, 966-974.	6.4	11
2	Quizartinib-resistant FLT3-ITD acute myeloid leukemia cells are sensitive to the FLT3-Aurora kinase inhibitor CCT241736. Blood Advances, 2020, 4, 1478-1491.	5.2	15
3	Integration of RNAi and Small Molecule Screens to Identify Targets for Drug Development. Methods in Molecular Biology, 2019, 1953, 33-42.	0.9	2
4	Metabolism of the dual FLT-3/Aurora kinase inhibitor CCT241736 in preclinical and human in vitro models: Implication for the choice of toxicology species. European Journal of Pharmaceutical Sciences, 2019, 139, 104899.	4.0	3
5	High Proliferation Rate and a Compromised Spindle Assembly Checkpoint Confers Sensitivity to the MPS1 Inhibitor BOS172722 in Triple-Negative Breast Cancers. Molecular Cancer Therapeutics, 2019, 18, 1696-1707.	4.1	24
6	E-Cadherin/ROS1 Inhibitor Synthetic Lethality in Breast Cancer. Cancer Discovery, 2018, 8, 498-515.	9.4	79
7	Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer. Nature Communications, 2018, 9, 1044.	12.8	39
8	Introduction of a Methyl Group Curbs Metabolism of Pyrido[3,4- <i>d</i>]pyrimidine Monopolar Spindle 1 (MPS1) Inhibitors and Enables the Discovery of the Phase 1 Clinical Candidate <i>N</i> ² -(2-Ethoxy-4-(4-methyl-4 <i>H</i> -1,2,4-triazol-3-yl)phenyl)-6-methyl- <i>N</i> ^{8(BOS172722). Journal of Medicinal Chemistry, 2018, 61, 8226-8240.}	up>-6.4 up>-néoper	ntyl <mark>24</mark> rido[3,4
9	Aurora B prevents premature removal of spindle assembly checkpoint proteins from the kinetochore: A key role for Aurora B in mitosis. Oncotarget, 2018, 9, 19525-19542.	1.8	27
10	Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy. British Journal of Cancer, 2017, 116, 1166-1176.	6.4	23
11	Targeting TAO Kinases Using a New Inhibitor Compound Delays Mitosis and Induces Mitotic Cell Death in Centrosome Amplified Breast Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 2410-2421.	4.1	32
12	RNAi screen reveals synthetic lethality between cyclin G-associated kinase and FBXW7 by inducing aberrant mitoses. British Journal of Cancer, 2017, 117, 954-964.	6.4	14
13	Rapid Discovery of Pyrido[3,4- <i>d</i>]pyrimidine Inhibitors of Monopolar Spindle Kinase 1 (MPS1) Using a Structure-Based Hybridization Approach. Journal of Medicinal Chemistry, 2016, 59, 3671-3688.	6.4	29
14	Aurora Kinase Inhibitors: Current Status and Outlook. Frontiers in Oncology, 2015, 5, 278.	2.8	221
15	Naturally Occurring Mutations in the <i>MPS1</i> Gene Predispose Cells to Kinase Inhibitor Drug Resistance. Cancer Research, 2015, 75, 3340-3354.	0.9	27
16	Aurora Kinase Inhibition: A New Light in the Sky?. Journal of Medicinal Chemistry, 2015, 58, 5186-5188.	6.4	9
17	7-(Pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine-based derivatives for kinase inhibition: Co-crystallisation studies with Aurora-A reveal distinct differences in the orientation of the pyrazole N1-substituent. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4203-4209.	2.2	13
18	New therapeutic perspectives in <scp>CCDC</scp> 6 deficient lung cancer cells. International Journal of Cancer, 2015, 136, 2146-2157.	5.1	41

#	Article	IF	CITATIONS
19	APC/C is an essential regulator of centrosome clustering. Nature Communications, 2014, 5, 3686.	12.8	70
20	Targeting the PPM1D phenotype; 2,4-bisarylthiazoles cause highly selective apoptosis in PPM1D amplified cell-lines. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3469-3474.	2.2	5
21	Structure-Based Design of Orally Bioavailable 1 <i>H</i> -Pyrrolo[3,2- <i>c</i>]pyridine Inhibitors of Mitotic Kinase Monopolar Spindle 1 (MPS1). Journal of Medicinal Chemistry, 2013, 56, 10045-10065.	6.4	72
22	Aurora Isoform Selectivity: Design and Synthesis of Imidazo[4,5- <i>b</i>]pyridine Derivatives as Highly Selective Inhibitors of Aurora-A Kinase in Cells. Journal of Medicinal Chemistry, 2013, 56, 9122-9135.	6.4	70
23	Aurora A Kinase Regulates Mammary Epithelial Cell Fate by Determining Mitotic Spindle Orientation in a Notch-Dependent Manner. Cell Reports, 2013, 4, 110-123.	6.4	59
24	Tumour selective targeting of cell cycle kinases for cancer treatment. Current Opinion in Pharmacology, 2013, 13, 529-535.	3.5	65
25	Integration of RNAi and Small Molecule Screens to Identify Targets for Drug Development. Methods in Molecular Biology, 2013, 986, 97-104.	0.9	6
26	Optimization of Imidazo[4,5- <i>b</i>]pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia. Journal of Medicinal Chemistry, 2012, 55, 8721-8734.	6.4	61
27	Sensitization of (colon) cancer cells to death receptor related therapies. Cancer Biology and Therapy, 2012, 13, 458-466.	3.4	4
28	Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia, 2012, 26, 1462-1470.	7.2	105
29	Abstract 889: Integration of centrosome-associated and kinase-related screens to identify centrosome amplification-related synthetic lethal interactions. , 2012, , .		0
30	The Aurora Kinase Inhibitor CCT137690 Downregulates MYCN and Sensitizes <i>MYCN</i> -Amplified Neuroblastoma <i>In Vivo</i> . Molecular Cancer Therapeutics, 2011, 10, 2115-2123.	4.1	79
31	Adaptation of the plasma inhibitory activity assay to detect Aurora, ABL and FLT3 kinase inhibition by AT9283 in pediatric leukemia. Leukemia Research, 2011, 35, 1273-1275.	0.8	6
32	Functional Viability Profiles of Breast Cancer. Cancer Discovery, 2011, 1, 260-273.	9.4	134
33	Abstract B74: The dual FLT3-Aurora inhibitor CCT241736 overcomes resistance to selective FLT3 inhibition driven by FLT3 ligand and FLT3 point mutations in acute myeloid leukemia , 2011, , .		3
34	Imidazo[4,5- <i>b</i>]pyridine Derivatives As Inhibitors of Aurora Kinases: Lead Optimization Studies toward the Identification of an Orally Bioavailable Preclinical Development Candidate. Journal of Medicinal Chemistry, 2010, 53, 5213-5228.	6.4	80
35	Auroraâ€A expressing tumour cells are deficient for homologyâ€directed DNA double strandâ€break repair and sensitive to PARP inhibition. EMBO Molecular Medicine, 2010, 2, 130-142.	6.9	60
36	Structure-based design of imidazo[1,2-a]pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5988-5993.	2.2	30

#	Article	IF	CITATIONS
37	PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study. Modern Pathology, 2010, 23, 1334-1345.	5.5	61
38	A Cancer-associated Aurora A Mutant Is Mislocalized and Misregulated Due to Loss of Interaction with TPX2. Journal of Biological Chemistry, 2009, 284, 33177-33184.	3.4	40
39	The Cyclin-Dependent Kinase Inhibitor Seliciclib (R-roscovitine; CYC202) Decreases the Expression of Mitotic Control Genes and Prevents Entry into Mitosis. Cell Cycle, 2007, 6, 3114-3131.	2.6	59
40	Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity. Molecular Cancer Therapeutics, 2007, 6, 3147-3157.	4.1	65
41	Aurora-A Regulation of Nuclear Factor-κB Signaling by Phosphorylation of lκBα. Cancer Research, 2007, 67, 1689-1695.	0.9	92
42	Aurora kinase inhibition downregulates NF-κB and sensitises tumour cells to chemotherapeutic agents. Biochemical and Biophysical Research Communications, 2007, 352, 220-225.	2.1	66
43	Hit generation and exploration: Imidazo[4,5-b]pyridine derivatives as inhibitors of Aurora kinases. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6567-6571.	2.2	78
44	Aurora-A kinase regulates NF-kappaB activity: lessons from combination studies. Journal of B U on, 2007, 12 Suppl 1, S67-70.	0.4	4
45	Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate, 2006, 66, 326-333.	2.3	138
46	The N-terminal domain of the Aurora-A Phe-31 variant encodes an E3 ubiquitin ligase and mediates ubiquitination of ll̂ºBα. Human Molecular Genetics, 2006, 15, 3343-3350.	2.9	7
47	Aurora B Overexpression Associates with the Thyroid Carcinoma Undifferentiated Phenotype and Is Required for Thyroid Carcinoma Cell Proliferation. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 928-935.	3.6	184
48	High-Throughput Screening Assay for Identification of Small Molecule Inhibitors of Aurora2/STK15 Kinase. Journal of Biomolecular Screening, 2004, 9, 391-397.	2.6	18
49	Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nature Genetics, 2003, 34, 403-412.	21.4	310