
Sarah A Lindley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5554092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatiotemporal Temperature and Pressure in Thermoplasmonic Gold Nanosphere–Water Systems. ACS Nano, 2021, 15, 6276-6288.	14.6	11
2	Hollow Gold Nanosphere Templated Synthesis of PEGylated Hollow Gold Nanostars and Use for SERS Detection of Amyloid Beta in Solution. Journal of Physical Chemistry B, 2021, 125, 12344-12352.	2.6	6
3	Fermi Level Engineering of Passivation and Electron Transport Materials for pâ€Type CuBi 2 O 4 Employing a Highâ€Throughput Methodology. Advanced Functional Materials, 2020, 30, 2000948.	14.9	28
4	Hollow Au Nanosphere-Cu ₂ O Core–Shell Nanostructures with Controllable Core Surface Morphology. Journal of Physical Chemistry C, 2020, 124, 11333-11339.	3.1	21
5	Synergistic Surface Passivation of CH ₃ NH ₃ PbBr ₃ Perovskite Quantum Dots with Phosphonic Acid and (3â€Aminopropyl)triethoxysilane. Chemistry - A European Journal, 2019, 25, 5014-5021.	3.3	43
6	Size Dependence of Charge Carrier Dynamics in Organometal Halide Perovskite Nanocrystals: Deciphering Radiative Versus Nonradiative Components. Journal of Physical Chemistry C, 2019, 123, 4610-4619.	3.1	29
7	Yolk-shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generation. Nano Energy, 2019, 62, 289-298.	16.0	83
8	Beneficial CuO Phase Segregation in the Ternary p-Type Oxide Photocathode CuBi ₂ O ₄ . ACS Applied Energy Materials, 2019, 2, 4111-4117.	5.1	48
9	Bumpy Hollow Gold Nanospheres for Theranostic Applications: Effect of Surface Morphology on Photothermal Conversion Efficiency. ACS Applied Nano Materials, 2019, 2, 1072-1081.	5.0	34
10	Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds. ACS Applied Materials & Interfaces, 2018, 10, 12992-13001.	8.0	17
11	Two-Photon Photoluminescence and Photothermal Properties of Hollow Gold Nanospheres for Efficient Theranostic Applications. Journal of Physical Chemistry C, 2018, 122, 13304-13313.	3.1	14
12	Improving Charge Carrier Delocalization in Perovskite Quantum Dots by Surface Passivation with Conductive Aromatic Ligands. ACS Energy Letters, 2018, 3, 2931-2939.	17.4	116
13	Sizeâ€Tunable Synthesis of Hollow Gold Nanospheres through Control of Reaction Temperature. Particle and Particle Systems Characterization, 2017, 34, 1600255.	2.3	12
14	Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angewandte Chemie - International Edition, 2016, 55, 8864-8868.	13.8	282
15	Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angewandte Chemie, 2016, 128, 9010-9014.	2.0	51
16	Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy and Environmental Science, 2016, 9, 2744-2775.	30.8	450
17	Towards understanding the unusual photoluminescence intensity variation of ultrasmall colloidal PbS quantum dots with the formation of a thin CdS shell. Physical Chemistry Chemical Physics, 2016, 18, 31828-31835.	2.8	11
18	Tunable Photoluminescent Core/Shell Cu ⁺ -Doped ZnSe/ZnS Quantum Dots Codoped with Al ³⁺ , Ga ³⁺ , or In ³⁺ . ACS Applied Materials & Interfaces, 2015, 7, 10055-10066.	8.0	49

SARAH A LINDLEY

#	Article	IF	CITATIONS
19	Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 26672-26682.	3.1	96
20	Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale, 2013, 5, 9867.	5.6	106
21	Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth. Journal of Materials Chemistry A, 2013, 1, 14498.	10.3	83