Eric Allémann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5553599/publications.pdf Version: 2024-02-01

FRIC ALLÃOMANN

#	Article	IF	CITATIONS
1	New cytotoxic obacunone-type limonoid and others constituents from the stem bark of <i>Carapa procera</i> DC (Meliaceae). Natural Product Research, 2022, 36, 2783-2790.	1.0	6
2	Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 41-52.	2.0	17
3	Nanoforming Hyaluronan-Based Thermoresponsive Hydrogels: Optimized and Tunable Functionality in Osteoarthritis Management. Pharmaceutics, 2022, 14, 659.	2.0	8
4	Fecal microbiota transplantation: a review on current formulations in <i>Clostridioides difficile</i> infection and future outlooks. Expert Opinion on Biological Therapy, 2022, 22, 929-944.	1.4	6
5	Bioguided identification of pentacyclic triterpenoids as anti-inflammatory bioactive constituents of Ocimum gratissimum extract. Journal of Ethnopharmacology, 2021, 268, 113637.	2.0	11
6	Vascular-targeted micelles as a specific MRI contrast agent for molecular imaging of fibrin clots and cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 347-358.	2.0	9
7	ldentification of Potential Antiseizure Agents in <i>Boswellia sacra</i> using <i>In Vivo</i> Zebrafish and Mouse Epilepsy Models. ACS Chemical Neuroscience, 2021, 12, 1791-1801.	1.7	7
8	Osteoarthritis In Vitro Models: Applications and Implications in Development of Intra-Articular Drug Delivery Systems. Pharmaceutics, 2021, 13, 60.	2.0	18
9	Combination of Hyaluronan and Lyophilized Progenitor Cell Derivatives: Stabilization of Functional Hydrogel Products for Therapeutic Management of Tendinous Tissue Disorders. Pharmaceutics, 2021, 13, 2196.	2.0	7
10	Cathepsin B-Cleavable Cyclopeptidic Chemotherapeutic Prodrugs. Molecules, 2020, 25, 4285.	1.7	6
11	Nano wet milled celecoxib extended release microparticles for local management of chronic inflammation. International Journal of Pharmaceutics, 2020, 589, 119783.	2.6	16
12	In Vitro Anti-Inflammatory Activity in Arthritic Synoviocytes of A. brachypoda Root Extracts and Its Unusual Dimeric Flavonoids. Molecules, 2020, 25, 5219.	1.7	6
13	MRI micelles self-assembled from synthetic gadolinium-based nano building blocks. Chemical Communications, 2019, 55, 945-948.	2.2	19
14	Development of resiquimod-loaded modified PLA-based nanoparticles for cancer immunotherapy: A kinetic study. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 253-261.	2.0	28
15	Antileishmanial Activity of Dimeric Flavonoids Isolated from Arrabidaea brachypoda. Molecules, 2019, 24, 1.	1.7	370
16	Squalene-PEG: Pyropheophorbide-a nanoconstructs for tumor theranostics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 243-251.	1.7	9
17	Design and characterization of a perivascular PLGA coated PET mesh sustaining the release of atorvastatin for the prevention of intimal hyperplasia. International Journal of Pharmaceutics, 2018, 537, 40-47.	2.6	9
18	Nanocrystal–Polymer Particles: Extended Delivery Carriers for Osteoarthritis Treatment. Small, 2018, 14, 1703108.	5.2	48

Eric Allémann

#	Article	IF	CITATIONS
19	Nanocrystals of a potent p38 MAPK inhibitor embedded in microparticles: Therapeutic effects in inflammatory and mechanistic murine models of osteoarthritis. Journal of Controlled Release, 2018, 276, 102-112.	4.8	51
20	Metformin hydrochloride microencapsulation by complex coacervation: Study of size distribution and encapsulation yield using response surface methodology. Journal of Drug Delivery Science and Technology, 2018, 45, 184-195.	1.4	12
21	Polymer-based nanoparticles loaded with a TLR7 ligand to target the lymph node for immunostimulation. International Journal of Pharmaceutics, 2018, 535, 444-451.	2.6	48
22	Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale, 2018, 10, 1845-1854.	2.8	64
23	Selfâ€Assembled Nanomicelles as MRI Bloodâ€Pool Contrast Agent. Chemistry - A European Journal, 2018, 24, 1348-1357.	1.7	19
24	Evaluating intimal hyperplasia under clinical conditions. Interactive Cardiovascular and Thoracic Surgery, 2018, 27, 427-436.	0.5	12
25	Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discovery Today, 2018, 23, 1761-1775.	3.2	131
26	Imaging the porous structure in the core of degrading PLGA microparticles: The effect of molecular weight. Journal of Controlled Release, 2018, 286, 231-239.	4.8	44
27	Squalene-PEG-Exendin as High-Affinity Constructs for Pancreatic Beta-Cells. Bioconjugate Chemistry, 2018, 29, 2531-2540.	1.8	6
28	Perivascular medical devices and drug delivery systems: Making the right choices. Biomaterials, 2017, 128, 56-68.	5.7	26
29	Activity of phosphatase-sensitive 5-aminolevulinic acid prodrugs in cancer cell lines. Journal of Photochemistry and Photobiology B: Biology, 2017, 171, 34-42.	1.7	20
30	[4]Helicene–Squalene Fluorescent Nanoassemblies for Specific Targeting of Mitochondria in Liveâ€Cell Imaging. Advanced Functional Materials, 2017, 27, 1701839.	7.8	32
31	Identification and Mode of Action of a Plant Natural Product Targeting Human Fungal Pathogens. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	35
32	Perivascular sustained release of atorvastatin from a hydrogel-microparticle delivery system decreases intimal hyperplasia. Journal of Controlled Release, 2016, 232, 93-102.	4.8	29
33	Tunable phosphatase-sensitive stable prodrugs of 5-aminolevulinic acid for tumor fluorescence photodetection. Journal of Controlled Release, 2016, 235, 155-164.	4.8	24
34	Effect of particle size on the biodistribution of nano- and microparticles following intra-articular injection in mice. International Journal of Pharmaceutics, 2016, 498, 119-129.	2.6	92
35	Fibrin degradation during sonothrombolysis – Effect of ultrasound, microbubbles and tissue plasminogen activator. Journal of Drug Delivery Science and Technology, 2015, 25, 29-35.	1.4	12
36	Intra-articular bioactivity of a p38 MAPK inhibitor and development of an extended-release system. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 110-117.	2.0	21

Eric Allémann

#	Article	IF	CITATIONS
37	Encapsulation of alimentary bioactive oils of the Baikal Lake area into pH-sensitive micro- and nanoparticles. LWT - Food Science and Technology, 2013, 53, 271-277.	2.5	15
38	Pharmaceutical Technology at the Service of Targeted Drug Delivery. Chimia, 2012, 66, 308-312.	0.3	3
39	InÂVitro Sonothrombolysis of Human Blood Clots with BR38 Microbubbles. Ultrasound in Medicine and Biology, 2012, 38, 1222-1233.	0.7	46
40	In vivo clot lysis of human thrombus with intravenous abciximab immunobubbles and ultrasound. Thrombosis Research, 2009, 124, 70-74.	0.8	61
41	Inhibition of HIV-1 in cell culture by oligonucleotide-loaded nanoparticles. Pharmaceutical Research, 2001, 18, 1096-1101.	1.7	28
42	Freeze-Drying and Lyopreservation of Diblock and Triblock Poly(Lactic Acid)–Poly(Ethylene Oxide) (PLA–PEO) Copolymer Nanoparticles. Pharmaceutical Development and Technology, 2000, 5, 473-483.	1.1	49
43	Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharmaceutical Research, 1999, 16, 859-866.	1.7	134
44	Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharmaceutical Research, 1998, 15, 1056-1062.	1.7	182
45	Preparation Techniques and Mechanisms of Formation of Biodegradable Nanoparticles from Preformed Polymers. Drug Development and Industrial Pharmacy, 1998, 24, 1113-1128.	0.9	474
46	Photodynamic activities and biodistribution of fluorinated zinc phthalocyanine derivatives in the murine EMT-6 tumour model. , 1997, 72, 289-294.		24
47	Photodynamic activities and biodistribution of fluorinated zinc phthalocyanine derivatives in the murine EMTâ€6 tumour model. International Journal of Cancer, 1997, 72, 289-294.	2.3	1
48	Biodegradable nanoparticles — From sustained release formulations to improved site specific drug delivery. Journal of Controlled Release, 1996, 39, 339-350.	4.8	240
49	Photodynamic therapy of tumours with hexadecafluoro zinc phthalocyanine formulated in PEG-coated poly(lactic acid) nanoparticles. , 1996, 66, 821-824.		87
50	Internalization of poly(D,L-1actic acid) nanoparticles by isolated human leukocytes and analysis of plasma proteins adsorbed onto the particles. Journal of Biomedical Materials Research Part B, 1994, 28, 471-481.	3.0	87
51	In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharmaceutical Research, 1993, 10, 1732-1737.	1.7	185