Peng Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5553147/publications.pdf

Version: 2024-02-01

57	3,510	182225	169272
papers	citations	h-index	56 g-index
			- J
57	57	57	4288
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries. Science China Materials, 2022, 65, 32-42.	3.5	4
2	Engineering metal-sulfides with cations-tunable metal-oxides electrocatalysts with promoted catalytic conversion for robust ions-storage capability. Energy Storage Materials, 2022, 45, 1183-1200.	9.5	26
3	Natural mineral compounds in energy-storage systems: Development, challenges, prospects. Energy Storage Materials, 2022, 45, 442-464.	9.5	20
4	Tailoring MS <i></i> Quantum Dots (M = Co, Ni, Cu, Zn) for Advanced Energy Storage Materials with Strong Interfacial Engineering. Small, 2022, 18, e2106593.	5.2	8
5	Engineering hierarchical Sb ₂ S ₃ /N–C from natural minerals with stable phase-change towards all-climate energy storage. Journal of Materials Chemistry A, 2022, 10, 5488-5504.	5.2	12
6	Coal-Based Electrodes for Energy Storage Systems: Development, Challenges, and Prospects. ACS Applied Energy Materials, 2022, 5, 7874-7888.	2.5	5
7	Rational Design of Nature Molybdenite with La ₂ O ₃ Catalysts for Improved Energy‧torage Behaviors. Advanced Materials Interfaces, 2022, 9, .	1.9	1
8	Advances on Nickel-Based Electrode Materials for Secondary Battery Systems: A Review. ACS Applied Energy Materials, 2022, 5, 9189-9213.	2.5	9
9	Rare earth metal La-doped induced electrochemical evolution of LiV ₃ O ₈ with an oxygen vacancy toward a high energy-storage capacity. Journal of Materials Chemistry A, 2021, 9, 1845-1858.	5.2	27
10	Designing Rational Interfacial Bonds for Hierarchical Mineralâ€Type Trogtalite with Double Carbon towards Ultraâ€Fast Sodiumâ€Ions Storage Properties. Advanced Functional Materials, 2021, 31, 2100156.	7.8	31
11	Unraveling the Mechanism of Chalcopyrite's Superior Performance for Lithium Storage. ACS Applied Energy Materials, 2021, 4, 5086-5093.	2.5	8
12	Tailoring Oxygen Site Defects of Vanadium-Based Materials through Bromine Anion Doping for Advanced Energy Storage. ACS Applied Energy Materials, 2021, 4, 10783-10798.	2.5	4
13	Modified bornite materials with high electrochemical performance for sodium and lithium storage. Energy Storage Materials, 2021, 40, 150-158.	9.5	13
14	Engineering the morphology/porosity of oxygen-doped carbon for sulfur host as lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 60, 531-545.	7.1	38
15	Recent Advances of Catalytic Effects in Cathode Materials for Roomâ€Temperature Sodiumâ€Sulfur Batteries. ChemPlusChem, 2021, 86, 1461-1471.	1.3	6
16	Engineering Heterogeneous NiS ₂ /NiS Cocatalysts with Progressive Electron Transfer from Planar <i>p</i> àâ€6i Photocathodes for Solar Hydrogen Evolution. Small Methods, 2021, 5, e2001018.	4.6	18
17	Self-Assembly of NaOL-DDA Mixtures in Aqueous Solution: A Molecular Dynamics Simulation Study. Molecules, 2021, 26, 7117.	1.7	2
18	Advanced MoSe ₂ /Carbon Electrodes in Li/Naâ€lons Batteries. Advanced Materials Interfaces, 2020, 7, 1901651.	1.9	57

#	Article	IF	CITATIONS
19	Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries. Nano-Micro Letters, 2020, 12, 16.	14.4	114
20	Microstructured Sulfur-Doped Carbon-Coated Fe ₇ S ₈ Composite for High-Performance Lithium and Sodium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 11783-11794.	3.2	38
21	Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Storage Materials, 2020, 32, 477-496.	9.5	46
22	Engineering metal sulfides with hierarchical interfaces for advanced sodium-ion storage systems. Journal of Materials Chemistry A, 2020, 8, 5284-5297.	5. 2	42
23	Interfacial Bonding of Metalâ€Sulfides with Double Carbon for Improving Reversibility of Advanced Alkaliâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1910599.	7.8	65
24	Doped-Li1+V3O8 as cathode materials for lithium-ion batteries: A mini review. Electrochemistry Communications, 2020, 115, 106722.	2.3	20
25	Carbon nanosheets from biomass waste: insights into the role of a controlled pore structure for energy storage. Sustainable Energy and Fuels, 2020, 4, 3552-3565.	2.5	15
26	The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property. Energy Storage Materials, 2019, 16, 267-280.	9.5	107
27	Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy, 2019, 65, 104038.	8.2	250
28	Bi ₂ MoO ₆ Microsphere with Double-Polyaniline Layers toward Ultrastable Lithium Energy Storage by Reinforced Structure. Inorganic Chemistry, 2019, 58, 6410-6421.	1.9	26
29	Yolk–Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity. ACS Applied Materials & Diterfaces, 2019, 11, 10829-10840.	4.0	132
30	Hierarchical Hollowâ€Microsphere Metal–Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1803035.	10.2	234
31	Ultrafast Sodium Full Batteries Derived from XFe (X = Co, Ni, Mn) Prussian Blue Analogs. Advanced Materials, 2019, 31, e1806092.	11.1	132
32	Electrochemically Exfoliated Phosphorene–Graphene Hybrid for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800328.	4.6	66
33	Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy, 2018, 48, 617-629.	8.2	227
34	Three-Dimensional Hierarchical Framework Assembled by Cobblestone-Like CoSe ₂ @C Nanospheres for Ultrastable Sodium-Ion Storage. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14716-14726.	4.0	116
35	Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Materials, 2018, 12, 310-323.	9.5	196
36	N-rich carbon coated CoSnO ₃ derived from <i>in situ</i> construction of a Co–MOF with enhanced sodium storage performance. Journal of Materials Chemistry A, 2018, 6, 4839-4847.	5.2	84

#	Article	IF	Citations
37	Electrochemical Investigation of Natural Ore Molybdenite (MoS ₂) as a First-Hand Anode for Lithium Storages. ACS Applied Materials & Interfaces, 2018, 10, 6378-6389.	4.0	52
38	Dual Functions of Potassium Antimony(III)â€Tartrate in Tuning Antimony/Carbon Composites for Longâ€Life Naâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1705744.	7.8	42
39	Multidimensional Evolution of Carbon Structures Underpinned by Temperatureâ€Induced Intermediate of Chloride for Sodiumâ€Ion Batteries. Advanced Science, 2018, 5, 1800080.	5.6	112
40	Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Materials Chemistry and Physics, 2018, 203, 185-192.	2.0	61
41	Metal–Organic Frameworkâ€Derived Materials for Sodium Energy Storage. Small, 2018, 14, 1702648.	5.2	129
42	Molecular-Level CuS@S Hybrid Nanosheets Constructed by Mineral Chemistry for Energy Storage Systems. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43669-43681.	4.0	32
43	Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy, 2018, 54, 26-38.	8.2	74
44	Perovskite ABO ₃ â€Type MOFâ€Derived Carbon Decorated Fe ₃ O ₄ with Enhanced Lithium Storage Performance. ChemElectroChem, 2018, 5, 3426-3436.	1.7	9
45	Size-Tunable Natural Mineral-Molybdenite for Lithium-Ion Batteries Toward: Enhanced Storage Capacity and Quicken Ions Transferring. Frontiers in Chemistry, 2018, 6, 389.	1.8	19
46	Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C-O-Fe oxygen-bridge bonds for enhanced sodium storages. Materials Chemistry and Physics, 2018, 216, 58-63.	2.0	29
47	Stabilization of LiV ₃ O ₈ Rodâ€like Structure by Protective Mg ₃ (PO ₄) ₂ Layer for Advanced Lithium Storage Cathodes. Energy Technology, 2018, 6, 2479-2487.	1.8	13
48	Tailoring Rodâ€Like FeSe ₂ Coated with Nitrogenâ€Doped Carbon for Highâ€Performance Sodium Storage. Advanced Functional Materials, 2018, 28, 1801765.	7.8	287
49	High-rate sodium ion anodes assisted by N-doped carbon sheets. Sustainable Energy and Fuels, 2017, 1, 1130-1136.	2.5	23
50	Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries. New Journal of Chemistry, 2017, 41, 6693-6699.	1.4	40
51	The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode. Journal of Power Sources, 2017, 366, 249-258.	4.0	72
52	Synergistic effect of cross-linked carbon nanosheet frameworks and Sb on the enhancement of sodium storage performances. New Journal of Chemistry, 2017, 41, 13724-13731.	1.4	12
53	3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. Journal of Materials Chemistry A, 2017, 5, 23550-23558.	5.2	69
54	Rodlike Sb ₂ Se ₃ Wrapped with Carbon: The Exploring of Electrochemical Properties in Sodium-Ion Batteries. ACS Applied Materials & Sodium-Ion Batteries. ACS Applied Materials & Sodium-Ion Batteries.	4.0	100

PENG GE

#	Article	IF	CITATIONS
55	Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26118-26125.	4.0	55
56	Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chemistry, 2017, 19, 4622-4632.	4.6	81
57	Designing Strong Interface of Cubicâ€like Sn–Co–S@carbon with SnO 2 as Catalyst for Enhanced Li/Naâ€lon Storage Abilities. Advanced Materials Interfaces, 0, , 2102474.	1.9	O