


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5553147/publications.pdf Version: 2024-02-01



DENC CE

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tailoring Rodâ€Like FeSe <sub>2</sub> Coated with Nitrogenâ€Doped Carbon for Highâ€Performance Sodium<br>Storage. Advanced Functional Materials, 2018, 28, 1801765.                                                  | 14.9 | 287       |
| 2  | Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage.<br>Nano Energy, 2019, 65, 104038.                                                                                    | 16.0 | 250       |
| 3  | Hierarchical Hollowâ€Microsphere Metal–Selenide@Carbon Composites with Rational Surface<br>Engineering for Advanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1803035.                                     | 19.5 | 234       |
| 4  | Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy, 2018, 48, 617-629.                                 | 16.0 | 227       |
| 5  | Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Materials, 2018, 12, 310-323.                                                    | 18.0 | 196       |
| 6  | Yolk–Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric<br>Capacity. ACS Applied Materials & Interfaces, 2019, 11, 10829-10840.                                              | 8.0  | 132       |
| 7  | Ultrafast Sodium Full Batteries Derived from XFe (X = Co, Ni, Mn) Prussian Blue Analogs. Advanced<br>Materials, 2019, 31, e1806092.                                                                                 | 21.0 | 132       |
| 8  | Metal–Organic Frameworkâ€Derived Materials for Sodium Energy Storage. Small, 2018, 14, 1702648.                                                                                                                      | 10.0 | 129       |
| 9  | Three-Dimensional Hierarchical Framework Assembled by Cobblestone-Like CoSe <sub>2</sub> @C<br>Nanospheres for Ultrastable Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10,<br>14716-14726.         | 8.0  | 116       |
| 10 | Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline<br>Aqueous Batteries. Nano-Micro Letters, 2020, 12, 16.                                                               | 27.0 | 114       |
| 11 | Multidimensional Evolution of Carbon Structures Underpinned by Temperatureâ€Induced Intermediate<br>of Chloride for Sodiumâ€Ion Batteries. Advanced Science, 2018, 5, 1800080.                                       | 11.2 | 112       |
| 12 | The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of<br>morphology structure, phase evolution and interface property. Energy Storage Materials, 2019, 16,<br>267-280. | 18.0 | 107       |
| 13 | Rodlike Sb <sub>2</sub> Se <sub>3</sub> Wrapped with Carbon: The Exploring of Electrochemical<br>Properties in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 34979-34989.                       | 8.0  | 100       |
| 14 | N-rich carbon coated CoSnO <sub>3</sub> derived from <i>in situ</i> construction of a Co–MOF with enhanced sodium storage performance. Journal of Materials Chemistry A, 2018, 6, 4839-4847.                         | 10.3 | 84        |
| 15 | Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chemistry, 2017, 19, 4622-4632.                                                              | 9.0  | 81        |
| 16 | Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy, 2018, 54, 26-38.                                   | 16.0 | 74        |
| 17 | The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode. Journal of Power Sources, 2017, 366, 249-258.                          | 7.8  | 72        |
| 18 | 3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. Journal of Materials Chemistry A, 2017, 5, 23550-23558.                                             | 10.3 | 69        |

Peng Ge

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Electrochemically Exfoliated Phosphorene–Graphene Hybrid for Sodiumâ€Ion Batteries. Small Methods,<br>2019, 3, 1800328.                                                                                                  | 8.6  | 66        |
| 20 | Interfacial Bonding of Metal‣ulfides with Double Carbon for Improving Reversibility of Advanced<br>Alkaliâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1910599.                                              | 14.9 | 65        |
| 21 | Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Materials<br>Chemistry and Physics, 2018, 203, 185-192.                                                                            | 4.0  | 61        |
| 22 | Advanced MoSe <sub>2</sub> /Carbon Electrodes in Li/Naâ€lons Batteries. Advanced Materials Interfaces,<br>2020, 7, 1901651.                                                                                              | 3.7  | 57        |
| 23 | Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for<br>Na-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 26118-26125.                                             | 8.0  | 55        |
| 24 | Electrochemical Investigation of Natural Ore Molybdenite (MoS <sub>2</sub> ) as a First-Hand Anode for Lithium Storages. ACS Applied Materials & Interfaces, 2018, 10, 6378-6389.                                        | 8.0  | 52        |
| 25 | Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Storage Materials, 2020, 32, 477-496.                                                                      | 18.0 | 46        |
| 26 | Dual Functions of Potassium Antimony(III)â€Tartrate in Tuning Antimony/Carbon Composites for<br>Longâ€Life Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1705744.                                          | 14.9 | 42        |
| 27 | Engineering metal sulfides with hierarchical interfaces for advanced sodium-ion storage systems.<br>Journal of Materials Chemistry A, 2020, 8, 5284-5297.                                                                | 10.3 | 42        |
| 28 | Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries. New Journal of Chemistry, 2017, 41, 6693-6699.                                        | 2.8  | 40        |
| 29 | Microstructured Sulfur-Doped Carbon-Coated Fe <sub>7</sub> S <sub>8</sub> Composite for<br>High-Performance Lithium and Sodium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8,<br>11783-11794.              | 6.7  | 38        |
| 30 | Engineering the morphology/porosity of oxygen-doped carbon for sulfur host as lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 60, 531-545.                                                                  | 12.9 | 38        |
| 31 | Molecular-Level CuS@S Hybrid Nanosheets Constructed by Mineral Chemistry for Energy Storage<br>Systems. ACS Applied Materials & Interfaces, 2018, 10, 43669-43681.                                                       | 8.0  | 32        |
| 32 | Designing Rational Interfacial Bonds for Hierarchical Mineralâ€Type Trogtalite with Double Carbon<br>towards Ultraâ€Fast Sodiumâ€Ions Storage Properties. Advanced Functional Materials, 2021, 31, 2100156.              | 14.9 | 31        |
| 33 | Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C-O-Fe oxygen-bridge bonds for enhanced sodium storages. Materials Chemistry and Physics, 2018, 216, 58-63.                                               | 4.0  | 29        |
| 34 | Rare earth metal La-doped induced electrochemical evolution of LiV <sub>3</sub> O <sub>8</sub> with<br>an oxygen vacancy toward a high energy-storage capacity. Journal of Materials Chemistry A, 2021, 9,<br>1845-1858. | 10.3 | 27        |
| 35 | Bi <sub>2</sub> MoO <sub>6</sub> Microsphere with Double-Polyaniline Layers toward Ultrastable<br>Lithium Energy Storage by Reinforced Structure. Inorganic Chemistry, 2019, 58, 6410-6421.                              | 4.0  | 26        |
| 36 | Engineering metal-sulfides with cations-tunable metal-oxides electrocatalysts with promoted catalytic conversion for robust ions-storage capability. Energy Storage Materials, 2022, 45, 1183-1200.                      | 18.0 | 26        |

Peng Ge

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | High-rate sodium ion anodes assisted by N-doped carbon sheets. Sustainable Energy and Fuels, 2017, 1, 1130-1136.                                                                                                             | 4.9  | 23        |
| 38 | Doped-Li1+V3O8 as cathode materials for lithium-ion batteries: A mini review. Electrochemistry Communications, 2020, 115, 106722.                                                                                            | 4.7  | 20        |
| 39 | Natural mineral compounds in energy-storage systems: Development, challenges, prospects. Energy<br>Storage Materials, 2022, 45, 442-464.                                                                                     | 18.0 | 20        |
| 40 | Size-Tunable Natural Mineral-Molybdenite for Lithium-Ion Batteries Toward: Enhanced Storage<br>Capacity and Quicken Ions Transferring. Frontiers in Chemistry, 2018, 6, 389.                                                 | 3.6  | 19        |
| 41 | Engineering Heterogeneous NiS <sub>2</sub> /NiS Cocatalysts with Progressive Electron Transfer<br>from Planar <i>p</i> ‣i Photocathodes for Solar Hydrogen Evolution. Small Methods, 2021, 5, e2001018.                      | 8.6  | 18        |
| 42 | Carbon nanosheets from biomass waste: insights into the role of a controlled pore structure for energy storage. Sustainable Energy and Fuels, 2020, 4, 3552-3565.                                                            | 4.9  | 15        |
| 43 | Stabilization of LiV <sub>3</sub> O <sub>8</sub> Rodâ€like Structure by Protective<br>Mg <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> Layer for Advanced Lithium Storage Cathodes. Energy<br>Technology, 2018, 6, 2479-2487. | 3.8  | 13        |
| 44 | Modified bornite materials with high electrochemical performance for sodium and lithium storage.<br>Energy Storage Materials, 2021, 40, 150-158.                                                                             | 18.0 | 13        |
| 45 | Synergistic effect of cross-linked carbon nanosheet frameworks and Sb on the enhancement of sodium storage performances. New Journal of Chemistry, 2017, 41, 13724-13731.                                                    | 2.8  | 12        |
| 46 | Engineering hierarchical Sb <sub>2</sub> S <sub>3</sub> /N–C from natural minerals with stable<br>phase-change towards all-climate energy storage. Journal of Materials Chemistry A, 2022, 10, 5488-5504.                    | 10.3 | 12        |
| 47 | Perovskite ABO <sub>3</sub> â€Type MOFâ€Derived Carbon Decorated Fe <sub>3</sub> O <sub>4</sub> with<br>Enhanced Lithium Storage Performance. ChemElectroChem, 2018, 5, 3426-3436.                                           | 3.4  | 9         |
| 48 | Advances on Nickel-Based Electrode Materials for Secondary Battery Systems: A Review. ACS Applied<br>Energy Materials, 2022, 5, 9189-9213.                                                                                   | 5.1  | 9         |
| 49 | Unraveling the Mechanism of Chalcopyrite's Superior Performance for Lithium Storage. ACS Applied<br>Energy Materials, 2021, 4, 5086-5093.                                                                                    | 5.1  | 8         |
| 50 | Tailoring MS <i><sub>x</sub></i> Quantum Dots (M = Co, Ni, Cu, Zn) for Advanced Energy Storage<br>Materials with Strong Interfacial Engineering. Small, 2022, 18, e2106593.                                                  | 10.0 | 8         |
| 51 | Recent Advances of Catalytic Effects in Cathode Materials for Roomâ€Temperature Sodiumâ€Sulfur<br>Batteries. ChemPlusChem, 2021, 86, 1461-1471.                                                                              | 2.8  | 6         |
| 52 | Coal-Based Electrodes for Energy Storage Systems: Development, Challenges, and Prospects. ACS<br>Applied Energy Materials, 2022, 5, 7874-7888.                                                                               | 5.1  | 5         |
| 53 | Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries. Science China Materials, 2022, 65, 32-42.                                                      | 6.3  | 4         |
| 54 | Tailoring Oxygen Site Defects of Vanadium-Based Materials through Bromine Anion Doping for<br>Advanced Energy Storage. ACS Applied Energy Materials, 2021, 4, 10783-10798.                                                   | 5.1  | 4         |

Peng Ge

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Self-Assembly of NaOL-DDA Mixtures in Aqueous Solution: A Molecular Dynamics Simulation Study.<br>Molecules, 2021, 26, 7117.                                               | 3.8 | 2         |
| 56 | Rational Design of Nature Molybdenite with La <sub>2</sub> O <sub>3</sub> Catalysts for Improved<br>Energyâ€&torage Behaviors. Advanced Materials Interfaces, 2022, 9, .   | 3.7 | 1         |
| 57 | Designing Strong Interface of Cubicâ€like Sn–Co–S@carbon with SnO 2 as Catalyst for Enhanced<br>Li/Naâ€lon Storage Abilities. Advanced Materials Interfaces, 0, , 2102474. | 3.7 | 0         |