Jihwan Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5553046/publications.pdf

Version: 2024-02-01

257450 254184 1,985 52 24 43 h-index citations g-index papers 53 53 53 3175 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	SUPT4H1-edited stem cell therapy rescues neuronal dysfunction in a mouse model for Huntington's disease. Npj Regenerative Medicine, 2022, 7, 8.	5.2	12
2	Mitochondrial genome mutations and neuronal dysfunction of induced pluripotent stem cells derived from patients with Alzheimer's disease. Cell Proliferation, 2022, 55, .	5.3	6
3	Therapeutic Effect of BDNF-Overexpressing Human Neural Stem Cells (F3.BDNF) in a Contusion Model of Spinal Cord Injury in Rats. International Journal of Molecular Sciences, 2021, 22, 6970.	4.1	18
4	Human iPSCâ€derived neural precursor cells differentiate into multiple cell types to delay disease progression following transplantation into YAC128 Huntington's disease mouse model. Cell Proliferation, 2021, 54, e13082.	5.3	14
5	Neural Transplants From Human Induced Pluripotent Stem Cells Rescue the Pathology and Behavioral Defects in a Rodent Model of Huntington's Disease. Frontiers in Neuroscience, 2020, 14, 558204.	2.8	15
6	The Global Alliance for iPSC Therapies (GAiT). Stem Cell Research, 2020, 49, 102036.	0.7	17
7	Haplobanking induced pluripotent stem cells for clinical use. Stem Cell Research, 2020, 49, 102035.	0.7	30
8	Intracerebral transplantation of HLAâ€homozygous human iPSCâ€derived neural precursors ameliorates the behavioural and pathological deficits in a rodent model of ischaemic stroke. Cell Proliferation, 2020, 53, e12884.	5.3	8
9	Modeling of Frontotemporal Dementia Using iPSC Technology. International Journal of Molecular Sciences, 2020, 21, 5319.	4.1	9
10	Intracerebral Transplants of GMP-Grade Human Umbilical Cord-Derived Mesenchymal Stromal Cells Effectively Treat Subacute-Phase Ischemic Stroke in a Rodent Model. Frontiers in Cellular Neuroscience, 2020, 14, 546659.	3.7	14
11	Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease. Cell Proliferation, 2020, 53, e12893.	5.3	3
12	Implantation of the clinical-grade human neural stem cell line, <i>CTX0E03</i> , rescues the behavioral and pathological deficits in the quinolinic acid-lesioned rodent model of Huntington's disease. Stem Cells, 2020, 38, 936-947.	3.2	21
13	Pathological manifestation of the induced pluripotent stem cellâ€derived cortical neurons from an earlyâ€onset Alzheimer's disease patient carrying a presenilinâ€1 mutation (S170F). Cell Proliferation, 2020, 53, e12798.	5. 3	14
14	Multimodal Therapeutic Effects of Neural Precursor Cells Derived from Human-Induced Pluripotent Stem Cells through Episomal Plasmid-Based Reprogramming in a Rodent Model of Ischemic Stroke. Stem Cells International, 2020, 2020, 1-17.	2.5	16
15	Intracerebral Transplantation of BDNF-overexpressing Human Neural Stem Cells (HB1.F3.BDNF) Promotes Migration, Differentiation and Functional Recovery in a Rodent Model of Huntington's Disease. Experimental Neurobiology, 2020, 29, 130-137.	1.6	18
16	The First Generation of iPSC Line from a Korean Alzheimer's Disease Patient Carrying APP-V715M Mutation Exhibits a Distinct Mitochondrial Dysfunction. Experimental Neurobiology, 2019, 28, 329-336.	1.6	6
17	Kinome-Wide RNA Interference Screening Identifies Mitogen-Activated Protein Kinases and Phosphatidylinositol Metabolism as Key Factors for Rabies Virus Infection. MSphere, 2019, 4, .	2.9	11
18	Interleukin-1 receptor antagonist-mediated neuroprotection by umbilical cord-derived mesenchymal stromal cells following transplantation into a rodent stroke model. Experimental and Molecular Medicine, 2018, 50, 1-12.	7.7	23

#	Article	IF	Citations
19	Recent progress of national banking project on homozygous <scp>HLA</scp> â€typed induced pluripotent stem cells in <scp>S</scp> outh <scp>K</scp> orea. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1531-e1536.	2.7	39
20	iPSC Modeling of Presenilin1 Mutation in Alzheimer's Disease with Cerebellar Ataxia. Experimental Neurobiology, 2018, 27, 350-364.	1.6	25
21	Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regenerative Medicine, 2018, 13, 859-866.	1.7	147
22	Repurposing the Cord Blood Bank for Haplobanking of HLA-Homozygous iPSCs and Their Usefulness to Multiple Populations. Stem Cells, 2018, 36, 1552-1566.	3.2	60
23	Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathologica, 2016, 132, 577-592.	7.7	145
24	Use of Microfluidic Technology to Monitor the Differentiation and Migration of Human ESC-Derived Neural Cells. Methods in Molecular Biology, 2016, 1502, 223-235.	0.9	2
25	Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study. Molecules and Cells, 2016, 39, 337-344.	2.6	5
26	Early neuroprotective effect with lack of long-term cell replacement effect on experimental stroke after intra-arterial transplantation of adipose-derived mesenchymal stromal cells. Cytotherapy, 2015, 17, 1090-1103.	0.7	44
27	Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System. Molecules and Cells, 2014, 37, 497-502.	2.6	36
28	Neural stem cells derived from epiblast stem cells display distinctive properties. Stem Cell Research, 2014, 12, 506-516.	0.7	13
29	In Vivo Roles of a Patient-Derived Induced Pluripotent Stem Cell Line (HD72-iPSC) in the YAC128 Model of Huntington's Disease. International Journal of Stem Cells, 2014, 7, 43-47.	1.8	34
30	Predictive value of circulating interleukin-6 and heart-type fatty acid binding protein for three months clinical outcome in acute cerebral infarction: multiple blood markers profiling study. Critical Care, 2013, 17, R45.	5.8	31
31	Limited clinical value of multiple blood markers in the diagnosis of ischemic stroke. Clinical Biochemistry, 2013, 46, 710-715.	1.9	30
32	PI3K/Akt and Stat3 signaling regulated by PTEN control of the cancer stem cell population, proliferation and senescence in a glioblastoma cell line. International Journal of Oncology, 2013, 42, 921-928.	3.3	83
33	Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Experimental and Molecular Medicine, 2013, 45, e53-e53.	7.7	32
34	Transcription Elongation Factor <i>Tcea3</i> Regulates the Pluripotent Differentiation Potential of Mouse Embryonic Stem Cells Via the <i>Lefty1</i> Nodal-Smad2 Pathway. Stem Cells, 2013, 31, 282-292.	3.2	30
35	Therapeutic Effect of BDNF-Overexpressing Human Neural Stem Cells (HB1.F3.BDNF) in a Rodent Model of Middle Cerebral Artery Occlusion. Cell Transplantation, 2013, 22, 1441-1452.	2.5	47
36	Therapeutic Potential of Human Induced Pluripotent Stem Cells in Experimental Stroke. Cell Transplantation, 2013, 22, 1427-1440.	2.5	69

#	Article	IF	Citations
37	Sprouty1 Regulates Neural and Endothelial Differentiation of Mouse Embryonic Stem Cells. Stem Cells and Development, 2012, 21, 554-561.	2.1	19
38	Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient. Biochemical Journal, 2012, 446, 359-371.	3.7	104
39	Neuronal Properties, In Vivo Effects, and Pathology of a Huntington's Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 2054-2062.	3.2	167
40	Alteration of immunologic responses on peripheral blood in the acute phase of ischemic stroke: Blood genomic profiling study. Journal of Neuroimmunology, 2012, 249, 60-65.	2.3	29
41	In vivo Tracking of Human Neural Stem Cells Following Transplantation into a Rodent Model of Ischemic Stroke. International Journal of Stem Cells, 2012, 5, 79-83.	1.8	6
42	Neuronal Differentiation of a Human Induced Pluripotent Stem Cell Line (FS-1) Derived from Newborn Foreskin Fibroblasts. International Journal of Stem Cells, 2012, 5, 140-145.	1.8	9
43	Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson's disease. Biochemical and Biophysical Research Communications, 2010, 393, 824-828.	2.1	23
44	Endothelial nitric oxide synthase gene polymorphisms and the risk of silent brain infarction. International Journal of Molecular Medicine, 2010, 25, 819-23.	4.0	22
45	In vivo tracking of human mesenchymal stem cells in experimental stroke. Cell Transplantation, 2008, 16, 1007-12.	2.5	23
46	In Vivo Tracking of Human Mesenchymal Stem Cells in Experimental Stroke. Cell Transplantation, 2007, 16, 1007-1012.	2.5	66
47	Human embryonic stem cell-derived neural precursor transplants attenuate apomorphine-induced rotational behavior in rats with unilateral quinolinic acid lesions. Neuroscience Letters, 2007, 423, 58-61.	2.1	73
48	The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Molecules and Cells, 2007, 23, 132-7.	2.6	42
49	Morphometry of the nasal bones and piriform apertures in Koreans. Annals of Anatomy, 2005, 187, 411-414.	1.9	51
50	Morphometrical changes of the human uterine tubes according to aging and menstrual cycle. Annals of Anatomy, 2004, 186, 263-269.	1.9	7
51	Cloning and characterization of the full-length mouse Ptk7 cDNA encoding a defective receptor protein tyrosine kinase. Gene, 2004, 328, 75-84.	2.2	40
52	The Type II Activin Receptors Are Essential for Egg Cylinder Growth, Gastrulation, and Rostral Head Development in Mice. Developmental Biology, 1999, 213, 157-169.	2.0	176