Mariangela Di Donato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5552512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unravelling the ultrafast dynamics of a N-BODIPY compound. Dyes and Pigments, 2022, 200, 110181.	3.7	2
2	Vibronic coherences in light harvesting nanotubes: unravelling the role of dark states. Journal of Materials Chemistry C, 2022, 10, 7216-7226.	5.5	8
3	Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochemical and Photobiological Sciences, 2022, 21, 557-584.	2.9	9
4	Radicalâ€Enhanced Intersystem Crossing in Peryleneâ€Oxoverdazyl Radical Dyads. ChemPhysChem, 2022, 23,	2.1	3
5	Red Lightâ€Emitting Thermallyâ€Activated Delayed Fluorescence of Naphthalimideâ€Phenoxazine Electron Donorâ€Acceptor Dyad: Timeâ€Resolved Optical and Magnetic Spectroscopic Studies. Chemistry - A European Journal, 2022, 28, .	3.3	12
6	Charge Separation and Intersystem Crossing in Homo- and Hetero-Compact Naphthalimide Dimers. Journal of Physical Chemistry B, 2022, 126, 4364-4378.	2.6	7
7	Balancing fluorescence and singlet oxygen formation in push–pull type near-infrared BODIPY photosensitizers. Journal of Materials Chemistry C, 2022, 10, 9344-9355.	5.5	11
8	Tailoring the optical and dynamic properties of iminothioindoxyl photoswitches through acidochromism. Chemical Science, 2021, 12, 4588-4598.	7.4	13
9	Torsion-Induced Nonradiative Relaxation of the Singlet Excited State of <i>meso</i> -Thienyl Bodipy and Charge Separation, Charge Recombination-Induced Intersystem Crossing in Its Compact Electron Donor/Acceptor Dyads. Journal of Physical Chemistry B, 2021, 125, 4779-4793.	2.6	19
10	Benzo[1,2-d:4,5-d′]bisthiazole fluorophores for luminescent solar concentrators: synthesis, optical properties and effect of the polymer matrix on the device performances. Dyes and Pigments, 2021, 188, 109207.	3.7	17
11	Dihydroazuleneâ€Azobenzeneâ€Dihydroazulene Triad Photoswitches. Chemistry - A European Journal, 2021, 27, 12437-12446.	3.3	8
12	Extremely fast triplet formation by charge recombination in a Nile Red/fullerene flexible dyad. Journal of Materials Chemistry C, 2021, 9, 10899-10911.	5.5	1
13	Luminescent solar concentrators with outstanding optical properties by employment of D–A–D quinoxaline fluorophores. Journal of Materials Chemistry C, 2021, 9, 15608-15621.	5.5	16
14	Phenylimino Indolinone: A Greenâ€Lightâ€Responsive Tâ€Type Photoswitch Exhibiting Negative Photochromism. Angewandte Chemie, 2021, 133, 25494.	2.0	2
15	Phenylimino Indolinone: A Greenâ€Lightâ€Responsive Tâ€Type Photoswitch Exhibiting Negative Photochromism. Angewandte Chemie - International Edition, 2021, 60, 25290-25295.	13.8	21
16	Steric hindrances and spectral distributions affecting energy transfer rate: A comparative study on specifically designed donor-acceptor pairs. Dyes and Pigments, 2020, 174, 108010.	3.7	1
17	Spin–Orbit Chargeâ€Transfer Intersystem Crossing (ISC) in Compact Electron Donor–Acceptor Dyads: ISC Mechanism and Application as Novel and Potent Photodynamic Therapy Reagents. Chemistry - A European Journal, 2020, 26, 1091-1102.	3.3	76
18	Phototautomerism of triazolo-triazole scaffold. Journal of Molecular Structure, 2020, 1203, 127368.	3.6	4

#	Article	IF	CITATIONS
19	Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet–Triplet-Annihilation Upconversion. Inorganic Chemistry, 2020, 59, 14731-14745.	4.0	23
20	Longâ€Lived Chargeâ€Transfer State Induced by Spinâ€Orbit Charge Transfer Intersystem Crossing (SOCTâ€ISC) in a Compact Spiro Electron Donor/Acceptor Dyad. Angewandte Chemie, 2020, 132, 11688-11696.	2.0	22
21	Intersystem crossing <i>via</i> charge recombination in a perylene–naphthalimide compact electron donor/acceptor dyad. Journal of Materials Chemistry C, 2020, 8, 8305-8319.	5.5	28
22	Tuning the Triplet Excited State of Bis(dipyrrin) Zinc(II) Complexes: Symmetry Breaking Charge Transfer Architecture with Exceptionally Long Lived Triplet State for Upconversion. Chemistry - A European Journal, 2020, 26, 14912-14918.	3.3	22
23	Nearâ€lRâ€Absorbing BODIPYâ€5,10â€Dihydrophenazine Compact Electron Donor/Acceptor Dyads and Triads: Spinâ€Orbit Charge Transfer Intersystem Crossing and Chargeâ€Transfer State. ChemPhotoChem, 2020, 4, 487-501.	3.0	14
24	Color-Tunable Delayed Fluorescence and Efficient Spin–Orbit Charge Transfer Intersystem Crossing in Compact Carbazole-Anthracene-Bodipy Triads Employing the Sequential Electron Transfer Approach. Journal of Physical Chemistry C, 2020, 124, 5944-5957.	3.1	31
25	Longâ€Lived Chargeâ€Transfer State Induced by Spinâ€Orbit Charge Transfer Intersystem Crossing (SOCTâ€ISC) in a Compact Spiro Electron Donor/Acceptor Dyad. Angewandte Chemie - International Edition, 2020, 59, 11591-11599.	13.8	74
26	Intersystem Crossing in Naphthalenediimide–Oxoverdazyl Dyads: Synthesis and Study of the Photophysical Properties. Chemistry - A European Journal, 2019, 25, 15615-15627.	3.3	13
27	Ultrafast processes triggered by one- and two-photon excitation of a photochromic and luminescent hydrazone. Beilstein Journal of Organic Chemistry, 2019, 15, 2438-2446.	2.2	6
28	Addressing Chargeâ€Transfer and Locallyâ€Excited States in a Twisted Biphenyl Pushâ€Pull Chromophore. ChemPhysChem, 2019, 20, 2860-2873.	2.1	13
29	Increasing the anti-Stokes shift in TTA upconversion with photosensitizers showing red-shifted spin-allowed charge transfer absorption but a non-compromised triplet state energy level. Chemical Communications, 2019, 55, 1510-1513.	4.1	60
30	Investigation of electronic energy transfer in a BODIPY-decorated calix[4]arene. Dyes and Pigments, 2019, 171, 107652.	3.7	9
31	Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range. Nature Communications, 2019, 10, 2390.	12.8	63
32	Taming the Complexity of Donor–Acceptor Stenhouse Adducts: Infrared Motion Pictures of the Complete Switching Pathway. Journal of the American Chemical Society, 2019, 141, 7376-7384.	13.7	66
33	Red Thermally Activated Delayed Fluorescence and the Intersystem Crossing Mechanisms in Compact Naphthalimide–Phenothiazine Electron Donor/Acceptor Dyads. Journal of Physical Chemistry C, 2019, 123, 30171-30186.	3.1	63
34	Tailoring the Optical Properties of Organic D-Ï€-A Photosensitizers: Effect of Sulfur Introduction in the Acceptor Group. European Journal of Organic Chemistry, 2019, 2019, 812-825.	2.4	3
35	A highly efficient heptamethine cyanine antenna for photosynthetic Reaction Center: From chemical design to ultrafast energy transfer investigation of the hybrid system. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 350-359.	1.0	17
36	A Revisit to the Orthogonal Bodipy Dimers: Experimental Evidence for the Symmetry Breaking Charge Transfer-Induced Intersystem Crossing. Journal of Physical Chemistry C, 2018, 122, 2502-2511.	3.1	79

#	Article	IF	CITATIONS
37	Tailoring Photoisomerization Pathways in Donor–Acceptor Stenhouse Adducts: The Role of the Hydroxy Group. Journal of Physical Chemistry A, 2018, 122, 955-964.	2.5	54
38	Spin–Orbit Charge Recombination Intersystem Crossing in Phenothiazine–Anthracene Compact Dyads: Effect of Molecular Conformation on Electronic Coupling, Electronic Transitions, and Electron Spin Polarizations of the Triplet States. Journal of Physical Chemistry C, 2018, 122, 27850-27865.	3.1	76
39	Cold-Adaptation Signatures in the Ligand Rebinding Kinetics to the Truncated Hemoglobin of the Antarctic Bacterium <i>Pseudoalteromonas haloplanktis</i> TAC125. Journal of Physical Chemistry B, 2018, 122, 11649-11661.	2.6	6
40	Solution and Solid-State Emission Toggling of a Photochromic Hydrazone. Journal of the American Chemical Society, 2018, 140, 12323-12327.	13.7	72
41	Solvent Effects on the Actinic Step of Donor–Acceptor Stenhouse Adduct Photoswitching. Angewandte Chemie - International Edition, 2018, 57, 8063-8068.	13.8	70
42	Solvent Effects on the Actinic Step of Donor–Acceptor Stenhouse Adduct Photoswitching. Angewandte Chemie, 2018, 130, 8195-8200.	2.0	21
43	Understanding the influence of disorder on the exciton dynamics and energy transfer in Zn-phthalocyanine H-aggregates. Physical Chemistry Chemical Physics, 2018, 20, 22331-22341.	2.8	9
44	Photoinduced excitation and charge transfer processes of organic dyes with siloxane anchoring groups: a combined spectroscopic and computational study. Physical Chemistry Chemical Physics, 2017, 19, 15310-15323.	2.8	11
45	Synthesis of Silatrane-Containing Organic Sensitizers as Precursors for the Silyloxyl Anchoring Group in Dye-Sensitized Solar Cells. Synthesis, 2017, 49, 3975-3984.	2.3	2
46	Shedding Light on the Photoisomerization Pathway of Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society, 2017, 139, 15596-15599.	13.7	88
47	Bodipy-squaraine triads: Preparation and study of the intramolecular energy transfer, charge separation and intersystem crossing. Dyes and Pigments, 2017, 147, 560-572.	3.7	12
48	Triplet Excited State of BODIPY Accessed by Charge Recombination and Its Application in Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry A, 2017, 121, 7550-7564.	2.5	96
49	Excitation Dynamics in Heteroâ€bichromophoric Calixarene Systems. ChemPhysChem, 2016, 17, 1686-1706.	2.1	10
50	Efficient Photoinduced Charge Separation in a BODIPY–C ₆₀ Dyad. Journal of Physical Chemistry C, 2016, 120, 16526-16536.	3.1	25
51	Coacervation of α-elastin studied by ultrafast nonlinear infrared spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 27981-27990.	2.8	8
52	Mechanism of the Intramolecular Charge Transfer State Formation in <i>all-trans</i> -β-Apo-8′-carotenal: Influence of Solvent Polarity and Polarizability. Journal of Physical Chemistry B, 2015, 119, 420-432.	2.6	24
53	Monitoring the intramolecular charge transfer process in the Z907 solar cell sensitizer: a transient Vis and IR spectroscopy and ab initio investigation. Physical Chemistry Chemical Physics, 2015, 17, 21594-21604.	2.8	10
54	Identification of the Excited-State Câ•C and Câ•O Modes of <i>trans</i> -β-Apo-8′-carotenal with Transient 2D-IR-EXSY and Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 1592-1598.	4.6	7

#	Article	IF	CITATIONS
55	Femtosecond transient infrared and stimulated Raman spectroscopy shed light on the relaxation mechanisms of photo-excited peridinin. Journal of Chemical Physics, 2015, 142, 212409.	3.0	16
56	Ultrafast infrared spectroscopy in photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 2-11.	1.0	23
57	Dynamics of the time-resolved stimulated Raman scattering spectrum in presence of transient vibronic inversion of population on the example of optically excited trans-β-apo-8′-carotenal. Journal of Chemical Physics, 2014, 140, 204312.	3.0	15
58	Combined Experimental and Theoretical Study of Efficient and Ultrafast Energy Transfer in a Molecular Dyad. Journal of Physical Chemistry C, 2014, 118, 23476-23486.	3.1	29
59	Ultrafast resonance energy transfer in the umbelliferone–alizarin bichromophore. Physical Chemistry Chemical Physics, 2014, 16, 10059-10074.	2.8	12
60	Combination of Transient 2D-IR Experiments and Ab Initio Computations Sheds Light on the Formation of the Charge-Transfer State in Photoexcited Carbonyl Carotenoids. Journal of Physical Chemistry B, 2014, 118, 9613-9630.	2.6	17
61	Role of Local Structure and Dynamics of Small Ligand Migration in Proteins: A Study of a Mutated Truncated Hemoprotein from <i>Thermobifida fusca</i> by Time Resolved MIR Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 9209-9217.	2.6	6
62	Structure and Dynamics of Low-Density and High-Density Liquid Water at High Pressure. Journal of Physical Chemistry Letters, 2014, 5, 235-240.	4.6	50
63	Valence Tautomerism in Co–Dioxolene Complexes: Static and Time-Resolved Infrared Spectroscopy Study. Journal of Physical Chemistry B, 2013, 117, 15492-15502.	2.6	20
64	Closed Reaction Centers of PS1 Still Can Perform the First Steps of Charge Separation. A Mid IR Pump Probe Study with fs Resolution. Advanced Topics in Science and Technology in China, 2013, , 127-130.	0.1	0
65	Carbon Monoxide Recombination Dynamics in Truncated Hemoglobins Studied with Visible-Pump MidlR-Probe Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 8753-8761.	2.6	10
66	Cofactors Involved in Light-Driven Charge Separation in Photosystem I Identified by Subpicosecond Infrared Spectroscopy. Biochemistry, 2011, 50, 480-490.	2.5	37
67	Proton transfer events in GFP. Physical Chemistry Chemical Physics, 2011, 13, 16295.	2.8	43
68	A Femtosecond Visible/Visible and Visible/Mid-Infrared Transient Absorption Study of the Light Harvesting Complex II. Biophysical Journal, 2009, 97, 3215-3223.	0.5	18
69	Primary Charge Separation in the Photosystem II Core from Synechocystis: A Comparison of Femtosecond Visible/Midinfrared Pump-Probe Spectra of Wild-Type and Two P680 Mutants. Biophysical Journal, 2008, 94, 4783-4795.	0.5	23
70	Quantum Dynamics of Electron Transfer from Bacteriochlorophyll to Pheophytin in Bacterial Reaction Centers. Journal of Chemical Theory and Computation, 2007, 3, 673-680.	5.3	35
71	Excitation Energy Transfer in the Photosystem II Core Antenna Complex CP43 Studied by Femtosecond Visible/Visible and Visible/Mid-Infrared Pump Probe Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 7345-7352.	2.6	31
72	Time-resolved methods in biophysics. 5. Femtosecond time-resolved and dispersed infrared spectroscopy on proteins. Photochemical and Photobiological Sciences, 2007, 6, 501.	2.9	52

#	Article	IF	CITATIONS
73	Electron transfer rates and Franck–Condon factors: an application to the early electron transfer steps in photosynthetic reaction centers. Theoretical Chemistry Accounts, 2007, 117, 957-967.	1.4	21
74	Intramolecular reorganization energies and Franck–Condon integrals for ET from pheophytin to quinone in bacterial photosynthetic reaction centers. Chemical Physics Letters, 2005, 413, 210-215.	2.6	5
75	Role of Intramolecular Vibrations in Long-Range Electron Transfer between Pheophytin and Ubiquinone in Bacterial Photosynthetic Reaction Centers. Biophysical Journal, 2005, 89, 830-841.	0.5	28
76	A possible role of histidine residues in long-range electron transfer in proteins. Theoretical Chemistry Accounts, 2004, 111, 303-310.	1.4	3
77	Electron Transfer between Quinones in Photosynthetic Reaction Centers. Journal of Physical Chemistry B, 2004, 108, 3068-3077.	2.6	20
78	The role of the iron–histidine bridge in the early steps of photosynthesis. Chemical Physics Letters, 2003, 369, 549-555.	2.6	8
79	A Plausible Mechanism of Electron Transfer between Quinones in Photosynthetic Reaction Centers. Journal of Theoretical Biology, 2000, 207, 101-105.	1.7	5
80	Proton Assisted Electron Transfer. Advances in Quantum Chemistry, 2000, 36, 301-322.	0.8	10
81	An alternative way of thinking about electron transfer in proteins: Proton assisted electron transfer between the primary and the secondary quinones in photosynthetic reaction centers. Journal of Chemical Physics, 2000, 113, 3212-3218.	3.0	16