Elisa Araldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5552498/publications.pdf

Version: 2024-02-01

201674 395702 2,998 33 27 33 citations h-index g-index papers 34 34 34 5810 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Targeted Suppression of miRNA-33 Using pHLIP Improves Atherosclerosis Regression. Circulation Research, 2022, 131, 77-90.	4.5	23
2	Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
3	The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress. Cell Reports, 2020, 32, 107846.	6.4	33
4	Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Reports, 2018, 22, 2133-2145.	6.4	94
5	Macrophage deficiency of miRâ€21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Molecular Medicine, 2017, 9, 1244-1262.	6.9	155
6	Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages. Cell Reports, 2017, 19, 2743-2755.	6.4	79
7	Chronic miRâ€29 antagonism promotes favorable plaque remodeling in atherosclerotic mice. EMBO Molecular Medicine, 2016, 8, 643-653.	6.9	61
8	Platelet WDR1 suppresses platelet activity and is associated with cardiovascular disease. Blood, 2016, 128, 2033-2042.	1.4	40
9	ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nature Communications, 2016, 7, 12313.	12.8	71
10	MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 2094-2103.	2.4	41
11	VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis. Circulation Research, 2016, 118, 38-47.	4.5	141
12	miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis, 2015, 243, 499-509.	0.8	53
13	Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. FASEB Journal, 2015, 29, 597-610.	0.5	35
14	MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nature Medicine, 2015, 21, 1280-1289.	30.7	203
15	Fibrosis and Hypoxia-Inducible Factor-1α–Dependent Tumors of the Soft Tissue on Loss of Von Hippel-Lindau in Mesenchymal Progenitors. American Journal of Pathology, 2015, 185, 3090-3101.	3.8	9
16	Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology, 2015, 13, 291-304.	1.7	34
17	Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology, 2015, 13, 291-304.	1.7	17
18	Improved repair of dermal wounds in mice lacking micro <scp>RNA</scp> â€155. Journal of Cellular and Molecular Medicine, 2014, 18, 1104-1112.	3.6	63

#	Article	IF	CITATIONS
19	Autoregulation of glypican-1 by intronic microRNA-149 fine-tunes the angiogenic response to fibroblast growth factor in human endothelial cells. Journal of Cell Science, 2014, 127, 1169-78.	2.0	61
20	Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development. Developmental Biology, 2014, 393, 124-136.	2.0	29
21	Notch pathway activation targets AML-initiating cell homeostasis and differentiation. Journal of Experimental Medicine, 2013, 210, 301-319.	8.5	148
22	MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacological Research, 2013, 75, 15-27.	7.1	90
23	Control of Cholesterol Metabolism and Plasma High-Density Lipoprotein Levels by microRNA-144. Circulation Research, 2013, 112, 1592-1601.	4.5	187
24	MiR-155 Has a Protective Role in the Development of Non-Alcoholic Hepatosteatosis in Mice. PLoS ONE, 2013, 8, e72324.	2.5	105
25	Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology, 2013, , .	1.7	2
26	The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO. Cell, 2012, 149, 63-74.	28.9	244
27	International Society for Extracellular Vesicles: first annual meeting, April 17–21, 2012: ISEV-2012. Journal of Extracellular Vesicles, 2012, 1, 19995.	12.2	22
28	VEGF-independent cell-autonomous functions of HIF- $1\hat{l}\pm$ regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. Journal of Bone and Mineral Research, 2012, 27, 596-609.	2.8	94
29	Lack of HIF- $2\hat{l}\pm$ in limb bud mesenchyme causes a modest and transient delay of endochondral bone development. Nature Medicine, 2011, 17, 25-26.	30.7	53
30	A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 2011, 473, 230-233.	27.8	351
31	MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2595-2606.	2.4	227
32	MicroRNA-140 and the silencing of osteoarthritis. Genes and Development, 2010, 24, 1075-1080.	5.9	60
33	Hypoxia, HIFs and bone development. Bone, 2010, 47, 190-196.	2.9	123