Tina A Grotzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5552404/publications.pdf

Version: 2024-02-01

37	1,352	17 h-index	34
papers	citations		g-index
39	39	39	1059
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Teacher views of experimentation in ecosystem science. Journal of Biological Education, 2023, 57, 517-536.	0.8	1
2	Details Matter: How Contrasting Design Features in Two MUVEs Impact Learning Outcomes. Technology, Knowledge and Learning, 2022, 27, 801-821.	3.1	1
3	Analyzing student thinking reflected in self-constructed cognitive maps and its influence on inquiry task performance. Instructional Science, 2021, 49, 287.	1.1	6
4	Assessing Science Identity Exploration in Immersive Virtual Environments: A Mixed Methods Approach. Journal of Experimental Education, 2021, 89, 468-489.	1.6	7
5	Pedagogical moves and student thinking in technologyâ€mediated medical problemâ€based learning: Supporting noviceâ€expert shift. British Journal of Educational Technology, 2019, 50, 2234-2250.	3.9	22
6	An agentive focus may limit learning about complex causality and systems dynamics: A study of seventh graders' explanations of ecosystems. Journal of Research in Science Teaching, 2019, 56, 1083-1105.	2.0	9
7	Scaffolding ecosystems science practice by blending immersive environments and computational modeling. British Journal of Educational Technology, 2019, 50, 2181-2202.	3.9	13
8	Constructing Causal Understanding in Complex Systems: Epistemic Strategies Used by Ecosystem Scientists. BioScience, 2019, 69, 533-543.	2.2	9
9	Transitions in Student Motivation During a MUVE-Based Ecosystem Science Curriculum. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 96-115.	0.2	2
10	Using a threeâ€dimensional thinking graph to support inquiry learning. Journal of Research in Science Teaching, 2018, 55, 1239-1263.	2.0	32
11	Supports for deeper learning of inquiry-based ecosystem science in virtual environments - Comparing virtual and physical concept mapping. Computers in Human Behavior, 2018, 87, 459-469.	5.1	24
12	Using Mobile Locationâ€Based Augmented Reality to Support Outdoor Learning in Undergraduate Ecology and Environmental Science Courses. Bulletin of the Ecological Society of America, 2018, 99, 259-276.	0.2	29
13	EcoMUVE. Advances in Educational Technologies and Instructional Design Book Series, 2018, , 1-25.	0.2	2
14	A study of students' reasoning about probabilistic causality: Implications for understanding complex systems and for instructional design. Instructional Science, 2017, 45, 25-52.	1.1	19
15	Leveraging Fourth and Sixth Graders' Experiences to Reveal Understanding of the Forms and Features of Distributed Causality. Cognition and Instruction, 2017, 35, 55-87.	1.9	16
16	Virtual Reality as an Immersive Medium for Authentic Simulations. Smart Computing and Intelligence, 2017, , 133-156.	0.7	3
17	Visualizing complex processes using a cognitive-mapping tool to support the learning of clinical reasoning. BMC Medical Education, 2016, 16, 216.	1.0	22
18	They Work Together to Roar: Kindergartners' Understanding of an Interactive Causal Task. Journal of Research in Childhood Education, 2016, 30, 422-439.	0.6	2

#	Article	IF	Citations
19	A multi-user virtual environment to support students' self-efficacy and interest in science: A latent growth model analysis. Learning and Instruction, 2016, 41, 11-22.	1.9	60
20	Action at an attentional distance: A study of children's reasoning about causes and effects involving spatial and attentional discontinuity. Journal of Research in Science Teaching, 2015, 52, 1003-1030.	2.0	20
21	Turning Transfer Inside Out: The Affordances of Virtual Worlds and Mobile Devices in Real World Contexts for Teaching About Causality Across Time and Distance in Ecosystems. Technology, Knowledge and Learning, 2015, 20, 43-69.	3.1	26
22	Exploring Ecosystems from the Inside: How Immersive Multi-user Virtual Environments Can Support Development of Epistemologically Grounded Modeling Practices in Ecosystem Science Instruction. Journal of Science Education and Technology, 2015, 24, 148-167.	2.4	27
23	Shifts in Student Motivation during Usage of a Multi-User Virtual Environment for Ecosystem Science. International Journal of Virtual and Personal Learning Environments, 2014, 5, 1-16.	0.4	9
24	Simplifying Causal Complexity: How Interactions Between Modes of Causal Induction and Information Availability Lead to Heuristicâ€Driven Reasoning. Mind, Brain, and Education, 2014, 8, 97-114.	0.9	29
25	Improving the learning of clinical reasoning through computer-based cognitive representation. Medical Education Online, 2014, 19, 25940.	1.1	11
26	EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers and Education, 2013, 68, 545-556.	5.1	357
27	Learning to Reason about Ecosystems Dynamics over Time: The Challenges of an Event-Based Causal Focus. BioScience, 2013, 63, 288-296.	2.2	42
28	Perceptual, Attentional, and Cognitive Heuristics That Interact with the Nature of Science to Complicate Public Understanding of Science., 2012,, 27-49.		1
29	The Role of Metacognition in Students' Understanding and Transfer of Explanatory Structures in Science. Contemporary Trends and Issues in Science Education, 2012, , 79-99.	0.2	21
30	Ecosystem Science Learning via Multi-User Virtual Environments. International Journal of Gaming and Computer-Mediated Simulations, 2011, 3, 86-90.	0.9	59
31	Public Understanding of Cognitive Neuroscience Research Findings: Trying to Peer Beyond Enchanted Glass. Mind, Brain, and Education, 2011, 5, 108-114.	0.9	2
32	Dimensions of Causal Understanding: the Role of Complex Causal Models in Students' Understanding of Science. Studies in Science Education, 2005, 41, 117-165.	3.4	129
33	Learning to Understand the Forms of Causality Implicit in Scientifically Accepted Explanations. Studies in Science Education, 2003, 39, 1-74.	3.4	63
34	How does grasping the underlying causal structures of ecosystems impact students' understanding?. Journal of Biological Education, 2003, 38, 16-29.	0.8	127
35	Teaching intelligence American Psychologist, 1997, 52, 1125-1133.	3.8	137
36	Why Immersive, Interactive Simulation Belongs in the Pedagogical Toolkit of "Next Generation― Science. , 0, , 127-146.		4

3

ARTICLE IF CITATIONS

Why Immersive, Interactive Simulation Belongs in the Pedagogical Toolkit of "Next Generation―

Science., 0, , 1578-1597.

O