## Tina A Grotzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5552404/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips.<br>Computers and Education, 2013, 68, 545-556.                                                                                                                      | 8.3 | 357       |
| 2  | Teaching intelligence American Psychologist, 1997, 52, 1125-1133.                                                                                                                                                                                                    | 4.2 | 137       |
| 3  | Dimensions of Causal Understanding: the Role of Complex Causal Models in Students' Understanding of Science. Studies in Science Education, 2005, 41, 117-165.                                                                                                        | 5.4 | 129       |
| 4  | How does grasping the underlying causal structures of ecosystems impact students' understanding?.<br>Journal of Biological Education, 2003, 38, 16-29.                                                                                                               | 1.5 | 127       |
| 5  | Learning to Understand the Forms of Causality Implicit in Scientifically Accepted Explanations.<br>Studies in Science Education, 2003, 39, 1-74.                                                                                                                     | 5.4 | 63        |
| 6  | A multi-user virtual environment to support students' self-efficacy and interest in science: A latent growth model analysis. Learning and Instruction, 2016, 41, 11-22.                                                                                              | 3.2 | 60        |
| 7  | Ecosystem Science Learning via Multi-User Virtual Environments. International Journal of Gaming and<br>Computer-Mediated Simulations, 2011, 3, 86-90.                                                                                                                | 1.1 | 59        |
| 8  | Learning to Reason about Ecosystems Dynamics over Time: The Challenges of an Event-Based Causal<br>Focus. BioScience, 2013, 63, 288-296.                                                                                                                             | 4.9 | 42        |
| 9  | Using a threeâ€dimensional thinking graph to support inquiry learning. Journal of Research in Science<br>Teaching, 2018, 55, 1239-1263.                                                                                                                              | 3.3 | 32        |
| 10 | Simplifying Causal Complexity: How Interactions Between Modes of Causal Induction and Information<br>Availability Lead to Heuristicâ€Driven Reasoning. Mind, Brain, and Education, 2014, 8, 97-114.                                                                  | 1.9 | 29        |
| 11 | Using Mobile Locationâ€Based Augmented Reality to Support Outdoor Learning in Undergraduate<br>Ecology and Environmental Science Courses. Bulletin of the Ecological Society of America, 2018, 99,<br>259-276.                                                       | 0.2 | 29        |
| 12 | Exploring Ecosystems from the Inside: How Immersive Multi-user Virtual Environments Can Support<br>Development of Epistemologically Grounded Modeling Practices in Ecosystem Science Instruction.<br>Journal of Science Education and Technology, 2015, 24, 148-167. | 3.9 | 27        |
| 13 | Turning Transfer Inside Out: The Affordances of Virtual Worlds and Mobile Devices in Real World<br>Contexts for Teaching About Causality Across Time and Distance in Ecosystems. Technology,<br>Knowledge and Learning, 2015, 20, 43-69.                             | 4.9 | 26        |
| 14 | Supports for deeper learning of inquiry-based ecosystem science in virtual environments - Comparing virtual and physical concept mapping. Computers in Human Behavior, 2018, 87, 459-469.                                                                            | 8.5 | 24        |
| 15 | Visualizing complex processes using a cognitive-mapping tool to support the learning of clinical reasoning. BMC Medical Education, 2016, 16, 216.                                                                                                                    | 2.4 | 22        |
| 16 | Pedagogical moves and student thinking in technologyâ€mediated medical problemâ€based learning:<br>Supporting noviceâ€expert shift. British Journal of Educational Technology, 2019, 50, 2234-2250.                                                                  | 6.3 | 22        |
| 17 | The Role of Metacognition in Students' Understanding and Transfer of Explanatory Structures in Science. Contemporary Trends and Issues in Science Education, 2012, , 79-99.                                                                                          | 0.5 | 21        |
| 18 | Action at an attentional distance: A study of children's reasoning about causes and effects involving spatial and attentional discontinuity. Journal of Research in Science Teaching, 2015, 52, 1003-1030.                                                           | 3.3 | 20        |

TINA A GROTZER

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A study of students' reasoning about probabilistic causality: Implications for understanding complex systems and for instructional design. Instructional Science, 2017, 45, 25-52.                       | 2.0 | 19        |
| 20 | Leveraging Fourth and Sixth Graders' Experiences to Reveal Understanding of the Forms and Features of Distributed Causality. Cognition and Instruction, 2017, 35, 55-87.                                 | 2.9 | 16        |
| 21 | Scaffolding ecosystems science practice by blending immersive environments and computational modeling. British Journal of Educational Technology, 2019, 50, 2181-2202.                                   | 6.3 | 13        |
| 22 | Improving the learning of clinical reasoning through computer-based cognitive representation.<br>Medical Education Online, 2014, 19, 25940.                                                              | 2.6 | 11        |
| 23 | Shifts in Student Motivation during Usage of a Multi-User Virtual Environment for Ecosystem Science. International Journal of Virtual and Personal Learning Environments, 2014, 5, 1-16.                 | 0.6 | 9         |
| 24 | An agentive focus may limit learning about complex causality and systems dynamics: A study of seventh graders' explanations of ecosystems. Journal of Research in Science Teaching, 2019, 56, 1083-1105. | 3.3 | 9         |
| 25 | Constructing Causal Understanding in Complex Systems: Epistemic Strategies Used by Ecosystem Scientists. BioScience, 2019, 69, 533-543.                                                                  | 4.9 | 9         |
| 26 | Assessing Science Identity Exploration in Immersive Virtual Environments: A Mixed Methods Approach.<br>Journal of Experimental Education, 2021, 89, 468-489.                                             | 2.6 | 7         |
| 27 | Analyzing student thinking reflected in self-constructed cognitive maps and its influence on inquiry task performance. Instructional Science, 2021, 49, 287.                                             | 2.0 | 6         |
| 28 | Why Immersive, Interactive Simulation Belongs in the Pedagogical Toolkit of "Next Generation―<br>Science. , 0, , 127-146.                                                                                |     | 4         |
| 29 | Virtual Reality as an Immersive Medium for Authentic Simulations. Smart Computing and Intelligence, 2017, , 133-156.                                                                                     | 0.5 | 3         |
| 30 | Public Understanding of Cognitive Neuroscience Research Findings: Trying to Peer Beyond Enchanted<br>Glass. Mind, Brain, and Education, 2011, 5, 108-114.                                                | 1.9 | 2         |
| 31 | They Work Together to Roar: Kindergartners' Understanding of an Interactive Causal Task. Journal of<br>Research in Childhood Education, 2016, 30, 422-439.                                               | 1.0 | 2         |
| 32 | EcoMUVE. Advances in Educational Technologies and Instructional Design Book Series, 2018, , 1-25.                                                                                                        | 0.2 | 2         |
| 33 | Transitions in Student Motivation During a MUVE-Based Ecosystem Science Curriculum. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 96-115.                           | 0.2 | 2         |
| 34 | Perceptual, Attentional, and Cognitive Heuristics That Interact with the Nature of Science to Complicate Public Understanding of Science. , 2012, , 27-49.                                               |     | 1         |
| 35 | Details Matter: How Contrasting Design Features in Two MUVEs Impact Learning Outcomes.<br>Technology, Knowledge and Learning, 2022, 27, 801-821.                                                         | 4.9 | 1         |
| 36 | Teacher views of experimentation in ecosystem science. Journal of Biological Education, 2023, 57, 517-536.                                                                                               | 1.5 | 1         |

| #  | ARTICLE                                                                                                                     | IF | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 37 | Why Immersive, Interactive Simulation Belongs in the Pedagogical Toolkit of "Next Generation―<br>Science. , 0, , 1578-1597. |    | 0         |