Yasuko Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5552114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Serum Soluble OX40 as a Diagnostic and Prognostic Biomarker for Drug-Induced Hypersensitivity Syndrome/Drug Reaction with Eosinophilia and Systemic Symptoms. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 558-565.e4.	2.0	10
2	Role of the Arginine Cluster in the Disordered Domain of Herpes Simplex Virus 1 UL34 for the Recruitment of ESCRT-III for Viral Primary Envelopment. Journal of Virology, 2022, 96, JVI0170421.	1.5	15
3	Viral shedding and the durability of IgG antibodies to SARS oVâ€2. Microbiology and Immunology, 2022, ,	0.7	1
4	Cross-Neutralizing Breadth and Longevity Against SARS-CoV-2 Variants After Infections. Frontiers in Immunology, 2022, 13, 773652.	2.2	9
5	Large-scale serosurveillance of COVID-19 in Japan: Acquisition of neutralizing antibodies for Delta but not for Omicron and requirement of booster vaccination to overcome the Omicron's outbreak. PLoS ONE, 2022, 17, e0266270.	1.1	11
6	Siglec-7 mediates varicella-zoster virus infection by associating with glycoprotein B. Biochemical and Biophysical Research Communications, 2022, 607, 67-72.	1.0	4
7	Induction of High Neutralizing Activity Against Both Omicron BA.2 and Omicron BA.1 by Coronavirus Disease 2019 Messenger RNA Booster Vaccination. Journal of Infectious Diseases, 2022, 226, 1481-1483.	1.9	5
8	Assessment of Neutralizing Antibody Response Against SARS-CoV-2 Variants After 2 to 3 Doses of the BNT162b2 mRNA COVID-19 Vaccine. JAMA Network Open, 2022, 5, e2210780.	2.8	27
9	Regulation of Siglec-7-mediated varicella-zoster virus infection of primary monocytes by cis-ligands. Biochemical and Biophysical Research Communications, 2022, 613, 41-46.	1.0	1
10	Diligent Medical Activities of a Publicly Designated Medical Institution for Infectious Diseases Pave the Way for Overcoming COVID-19: A Positive Message to People Working at the Cutting Edge. Clinical Infectious Diseases, 2021, 72, 723-724.	2.9	12
11	Seroepidemiological Survey of the Antibody for Severe Acute Respiratory Syndrome Coronavirus 2 with Neutralizing Activity at Hospitals: A Cross-sectional Study in Hyogo Prefecture, Japan. JMA Journal, 2021, 4, 41-49.	0.6	10
12	The Combination of gQ1 and gQ2 in Human Herpesvirus 6A and 6B Regulates the Viral Tetramer Function for Their Receptor Recognition. Journal of Virology, 2021, 95, .	1.5	3
13	Seroepidemiological study of SARS-CoV-2 infection in East Java, Indonesia. PLoS ONE, 2021, 16, e0251234.	1.1	21
14	The Roseoloviruses Downregulate the Protein Tyrosine Phosphatase PTPRC (CD45). Journal of Virology, 2021, 95, e0162820.	1.5	7
15	Massive surge of mRNA expression of clonal B-cell receptor in patients with COVID-19. Heliyon, 2021, 7, e07748.	1.4	4
16	Development of combination adjuvant for efficient T cell and antibody response induction against protein antigen. PLoS ONE, 2021, 16, e0254628.	1.1	4
17	Cross-Neutralizing Activity Against SARS-CoV-2 Variants in COVID-19 Patients: Comparison of 4 Waves of the Pandemic in Japan. Open Forum Infectious Diseases, 2021, 8, ofab430.	0.4	18
18	Human Herpesvirus 6A Tegument Protein U14 Induces NF-κB Signaling by Interacting with p65. Journal of Virology, 2021, 95, e0126921.	1.5	6

#	Article	IF	CITATIONS
19	The Neutralizing Antibody Response against Severe Acute Respiratory Syndrome Coronavirus 2 and the Cytokine/Chemokine Release in Patients with Different Levels of Coronavirus Diseases 2019 Severity: Cytokine Storm Still Persists Despite Viral Disappearance in Critical Patients. JMA Journal, 2021, 4, 1-7.	0.6	5
20	Early Differences in Cytokine Production by Severity of Coronavirus Disease 2019. Journal of Infectious Diseases, 2021, 223, 1145-1149.	1.9	80
21	Structural basis for the interaction of human herpesvirus 6B tetrameric glycoprotein complex with the cellular receptor, human CD134. PLoS Pathogens, 2020, 16, e1008648.	2.1	3
22	Role of Phosphatidylethanolamine Biosynthesis in Herpes Simplex Virus 1-Infected Cells in Progeny Virus Morphogenesis in the Cytoplasm and in Viral Pathogenicity <i>In Vivo</i> . Journal of Virology, 2020, 94, .	1.5	13
23	Tetrameric glycoprotein complex gH/gL/gQ1/gQ2 is a promising vaccine candidate for human herpesvirus 6B. PLoS Pathogens, 2020, 16, e1008609.	2.1	10
24	Comprehensive Screening of Mouse T-Cell Epitopes in Human Herpesvirus 6B Glycoprotein H/L/Q1/Q2 Tetramer Complex. Journal of Immunology Research, 2020, 2020, 1-13.	0.9	1
25	Human herpesvirus 6A U27 plays an essential role for the virus propagation. Microbiology and Immunology, 2020, 64, 703-711.	0.7	1
26	ESCRT-III controls nuclear envelope deformation induced by progerin. Scientific Reports, 2020, 10, 18877.	1.6	12
27	An Animal Model That Mimics Human Herpesvirus 6B Pathogenesis. Journal of Virology, 2020, 94, .	1.5	7
28	Title is missing!. , 2020, 16, e1008648.		0
29	Title is missing!. , 2020, 16, e1008648.		0
30	Title is missing!. , 2020, 16, e1008648.		0
31	Title is missing!. , 2020, 16, e1008648.		0
32	Entry of betaherpesviruses. Advances in Virus Research, 2019, 104, 283-312.	0.9	16
33	Sleep Shortage Is Associated With Postherpetic Neuralgia Development Through Hyperesthesia and Acute Pain Intensity: A Communityâ€Based Prospective Cohort Study. Pain Practice, 2019, 19, 476-483.	0.9	13
34	Identification of CD4 and H-2Kd-restricted cytotoxic T lymphocyte epitopes on the human herpesvirus 6B glycoprotein Q1 protein. Scientific Reports, 2019, 9, 3911.	1.6	4
35	Humanization of Murine Neutralizing Antibodies against Human Herpesvirus 6B. Journal of Virology, 2019, 93, .	1.5	6
36	Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nature Communications, 2019, 10, 754.	5.8	200

#	Article	IF	CITATIONS
37	Human CD134 (OX40) expressed on T cells plays a key role for human herpesvirus 6B replication after allogeneic hematopoietic stem cell transplantation. Journal of Clinical Virology, 2018, 102, 50-55.	1.6	16
38	The Neutralizing Linear Epitope of Human Herpesvirus 6A Glycoprotein B Does Not Affect Virus Infectivity. Journal of Virology, 2018, 92, .	1.5	3
39	The human vascular endothelial cell line HUV-EC-C harbors the integrated HHV-6B genome which remains stable in long term culture. Cytotechnology, 2018, 70, 141-152.	0.7	6
40	Glycoproteins of HHV-6A and HHV-6B. Advances in Experimental Medicine and Biology, 2018, 1045, 145-165.	0.8	5
41	Structural Aspects of Betaherpesvirus-Encoded Proteins. Advances in Experimental Medicine and Biology, 2018, 1045, 227-249.	0.8	1
42	Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration. Journal of Virology, 2017, 91, .	1.5	30
43	Crystal Structure of the DNA-Binding Domain of Human Herpesvirus 6A Immediate Early Protein 2. Journal of Virology, 2017, 91, .	1.5	10
44	Relationship between cellâ€mediated immunity to Varicella–Zoster virus and aging in subjects from the communityâ€based Shozu Herpes Zoster study. Journal of Medical Virology, 2017, 89, 313-317.	2.5	10
45	Purification, Crystallization and X-ray Diffraction Study of the C-terminal Domain of Human Herpesvirus 6A Immediate Early Protein 2. Kobe Journal of Medical Sciences, 2017, 62, E142-E149.	0.2	1
46	Crystal Structure of Human Herpesvirus 6B Tegument Protein U14. PLoS Pathogens, 2016, 12, e1005594.	2.1	12
47	Preferential expression of CD134, an HHV-6 cellular receptor, on CD4T cells in drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS). Journal of Dermatological Science, 2016, 83, 151-154.	1.0	29
48	Human Herpesvirus 6A U14 Is Important for Virus Maturation. Journal of Virology, 2016, 90, 1677-1681.	1.5	7
49	Clinical and immunologic features of recurrent herpes zoster (HZ). Journal of the American Academy of Dermatology, 2016, 75, 950-956.e1.	0.6	19
50	Comprehensive analysis of serum cytokines/chemokines in febrile children with primary human herpes virus-6B infection. Journal of Infection and Chemotherapy, 2016, 22, 593-598.	0.8	9
51	Human herpesvirus 6 U11 protein is critical for virus infection. Virology, 2016, 489, 151-157.	1.1	13
52	Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection. Virology, 2016, 490, 1-5.	1.1	4
53	Use of a current varicella vaccine as a live polyvalent vaccine vector. Vaccine, 2016, 34, 296-298.	1.7	3
54	The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathogens, 2016, 12, e1005666.	2.1	58

#	Article	IF	CITATIONS
55	Incidences of Herpes Zoster and Postherpetic Neuralgia in Japanese Adults Aged 50 Years and Older From a Community-based Prospective Cohort Study: The SHEZ Study. Journal of Epidemiology, 2015, 25, 617-625.	1.1	51
56	The human herpesvirus 6 U21–U24 gene cluster is dispensable for virus growth. Microbiology and Immunology, 2015, 59, 48-53.	0.7	7
57	Human Herpesvirus-6 U14 Induces Cell-Cycle Arrest in G2/M Phase by Associating with a Cellular Protein, EDD. PLoS ONE, 2015, 10, e0137420.	1.1	16
58	Determinants of Human CD134 Essential for Entry of Human Herpesvirus 6B. Journal of Virology, 2015, 89, 10125-10129.	1.5	15
59	A Human Herpesvirus 6A-Encoded MicroRNA: Role in Viral Lytic Replication. Journal of Virology, 2015, 89, 2615-2627.	1.5	45
60	Maturation of Human Herpesvirus 6A Glycoprotein O Requires Coexpression of Glycoprotein H and Glycoprotein L. Journal of Virology, 2015, 89, 5159-5163.	1.5	9
61	A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity. Vaccine, 2015, 33, 6085-6092.	1.7	1
62	Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion. Journal of Biological Chemistry, 2015, 290, 19833-19843.	1.6	29
63	VZV skin-test reaction, but not antibody, is an important predictive factor for postherpetic neuralgia. Journal of Dermatological Science, 2015, 79, 235-240.	1.0	22
64	Detailed Study of the Interaction between Human Herpesvirus 6B Glycoprotein Complex and Its Cellular Receptor, Human CD134. Journal of Virology, 2014, 88, 10875-10882.	1.5	23
65	MHC class I molecules are incorporated into human herpesvirusâ€6 viral particles and released into the extracellular environment. Microbiology and Immunology, 2014, 58, 119-125.	0.7	22
66	Human herpesvirusâ€6 <scp>A</scp> g <scp>Q</scp> 1 and g <scp>Q</scp> 2 are critical for human <scp>CD</scp> 46 usage. Microbiology and Immunology, 2014, 58, 22-30.	0.7	23
67	Varicella-Zoster Virus ORF49 Functions in the Efficient Production of Progeny Virus through Its Interaction with Essential Tegument Protein ORF44. Journal of Virology, 2014, 88, 188-201.	1.5	22
68	Characterization of the human herpesvirus 6A U23 gene. Virology, 2014, 450-451, 98-105.	1.1	8
69	Classification of HHV-6A and HHV-6B as distinct viruses. Archives of Virology, 2014, 159, 863-870.	0.9	292
70	Human herpesvirus 6 gM/gN complex interacts with v-SNARE in infected cells. Journal of General Virology, 2014, 95, 2769-2777.	1.3	6
71	An inverse correlation of VZV skin-test reaction, but not antibody, with severity of herpes zoster skin symptoms and zoster-associated pain. Journal of Dermatological Science, 2013, 69, 243-249.	1.0	38
72	Novel polyvalent live vaccine against varicella–zoster and mumps virus infections. Microbiology and Immunology, 2013, 57, 704-714.	0.7	8

Yasuko Mori

#	Article	IF	CITATIONS
73	Identification of the Human Herpesvirus 6A gQ1 Domain Essential for Its Functional Conformation. Journal of Virology, 2013, 87, 7054-7063.	1.5	9
74	CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9096-9099.	3.3	140
75	The Shozu Herpes Zoster (SHEZ) Study: Rationale, Design, and Description of a Prospective Cohort Study. Journal of Epidemiology, 2012, 22, 167-174.	1.1	21
76	Complementation of the Function of Glycoprotein H of Human Herpesvirus 6 Variant A by Glycoprotein H of Variant B in the Virus Life Cycle. Journal of Virology, 2012, 86, 8492-8498.	1.5	26
77	A community-based survey of varicella-zoster virus-specific immune responses in the elderly. Journal of Clinical Virology, 2012, 55, 46-50.	1.6	33
78	Features of Human Herpesvirus-6A and -6B Entry. Advances in Virology, 2012, 2012, 1-6.	0.5	9
79	Multiple Reversions of an IL2RG Mutation Restore T cell Function in an X-linked Severe Combined Immunodeficiency Patient. Journal of Clinical Immunology, 2012, 32, 690-697.	2.0	24
80	Human herpesvirus 6 glycoprotein M is essential for virus growth and requires glycoprotein N for its maturation. Virology, 2012, 429, 21-28.	1.1	15
81	Human herpesvirus 6 major immediate early promoter has strong activity in T cells and is useful for heterologous gene expression. Virology Journal, 2011, 8, 9.	1.4	8
82	Analysis of a Neutralizing Antibody for Human Herpesvirus 6B Reveals a Role for Glycoprotein Q1 in Viral Entry. Journal of Virology, 2011, 85, 12962-12971.	1.5	28
83	Human Herpesvirus 6 Glycoprotein Complex Formation Is Required for Folding and Trafficking of the gH/gL/gQ1/gQ2 Complex and Its Cellular Receptor Binding. Journal of Virology, 2011, 85, 11121-11130.	1.5	34
84	Varicella-Zoster Virus Glycoprotein M. Current Topics in Microbiology and Immunology, 2010, 342, 147-154.	0.7	1
85	Rapid and efficient introduction of a foreign gene into bacterial artificial chromosome-cloned varicella vaccine by Tn7-mediated site-specific transposition. Virology, 2010, 402, 215-221.	1.1	8
86	Characterization of varicella-zoster virus-encoded ORF0 gene—Comparison of parental and vaccine strains. Virology, 2010, 405, 280-288.	1,1	31
87	Human herpesvirus 6 encoded glycoprotein Q1 gene is essential for virus growth. Virology, 2010, 407, 360-367.	1.1	47
88	Characterization of the Varicella-Zoster Virus ORF50 Gene, Which Encodes Glycoprotein M. Journal of Virology, 2010, 84, 3488-3502.	1.5	19
89	Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 866-871.	3.3	140
90	Human herpesvirus-6 entry into host cells. Future Microbiology, 2010, 5, 1015-1023.	1.0	16

Yasuko Mori

#	Article	IF	CITATIONS
91	Comparison of Varicellaâ€Zoster Virus–Specific Immunity of Patients with Diabetes Mellitus and Healthy Individuals. Journal of Infectious Diseases, 2009, 200, 1606-1610.	1.9	70
92	Recent topics related to human herpesvirus 6 cell tropism. Cellular Microbiology, 2009, 11, 1001-1006.	1.1	69
93	Human herpesvirus 6 envelope components enriched in lipid rafts: evidence for virion-associated lipid rafts. Virology Journal, 2009, 6, 127.	1.4	17
94	Human Herpesvirusâ€6 Induces MVB Formation, and Virus Egress Occurs by an Exosomal Release Pathway. Traffic, 2008, 9, 1728-1742.	1.3	160
95	Varicella-zoster virus ORF1 gene product is a tail-anchored membrane protein localized to plasma membrane and trans-Golgi network in infected cells. Virology, 2008, 377, 289-295.	1.1	9
96	Human herpesvirus-6 infection induces the reorganization of membrane microdomains in target cells, which are required for virus entry. Virology, 2008, 378, 265-271.	1.1	41
97	Measurement of Varicellaâ€Zoster Virus (VZV)–Specific Cellâ€Mediated Immunity: Comparison between VZV Skin Test and Interferonâ€Î³ Enzyme‣inked Immunospot Assay. Journal of Infectious Diseases, 2008, 198, 1327-1333.	1.9	59
98	Varicella-Zoster Virus Glycoprotein M Homolog Is Glycosylated, Is Expressed on the Viral Envelope, and Functions in Virus Cell-to-Cell Spread. Journal of Virology, 2008, 82, 795-804.	1.5	31
99	Deletion in Open Reading Frame 49 of Varicella-Zoster Virus Reduces Virus Growth in Human Malignant Melanoma Cells but Not in Human Embryonic Fibroblasts. Journal of Virology, 2007, 81, 12654-12665.	1.5	31
100	Cloning of full length genome of varicella-zoster virus vaccine strain into a bacterial artificial chromosome and reconstitution of infectious virus. Vaccine, 2007, 25, 5006-5012.	1.7	29
101	Generation of a recombinant Oka varicella vaccine expressing mumps virus hemagglutinin-neuraminidase protein as a polyvalent live vaccine. Vaccine, 2007, 25, 8741-8755.	1.7	28
102	Human herpesvirus 6 envelope cholesterol is required for virus entry. Journal of General Virology, 2006, 87, 277-285.	1.3	59
103	Human Herpesvirus 6 Open Reading Frame U14 Protein and Cellular p53 Interact with Each Other and Are Contained in the Virion. Journal of Virology, 2005, 79, 13037-13046.	1.5	43
104	Intracellular Processing of Human Herpesvirus 6 Glycoproteins Q1 and Q2 into Tetrameric Complexes Expressed on the Viral Envelope. Journal of Virology, 2004, 78, 7969-7983.	1.5	78
105	Discovery of a Second Form of Tripartite Complex Containing gH-gL of Human Herpesvirus 6 and Observations on CD46. Journal of Virology, 2004, 78, 4609-4616.	1.5	78
106	Cloning of the varicella-zoster virus genome as an infectious bacterial artificial chromosome in Escherichia coli. Vaccine, 2004, 22, 4069-4074.	1.7	70
107	The Human Herpesvirus 6 U100 Gene Product Is the Third Component of the gH-gL Glycoprotein Complex on the Viral Envelope. Journal of Virology, 2003, 77, 2452-2458.	1.5	60
108	Human Herpesvirus 6 Variant A Glycoprotein H-Glycoprotein L-Glycoprotein Q Complex Associates with Human CD46. Journal of Virology, 2003, 77, 4992-4999.	1.5	98

#	Article	IF	CITATIONS
109	Comparison of the Complete DNA Sequences of the Oka Varicella Vaccine and Its Parental Virus. Journal of Virology, 2002, 76, 11447-11459.	1.5	174
110	Human Herpesvirus 6 Variant A but Not Variant B Induces Fusion from Without in a Variety of Human Cells through a Human Herpesvirus 6 Entry Receptor, CD46. Journal of Virology, 2002, 76, 6750-6761.	1.5	100
111	Human herpesvirus-6 rep/U94 gene product has single-stranded DNA-binding activity. Journal of General Virology, 2002, 83, 847-854.	1.3	68
112	Human herpesvirus 8-encoded interleukin-6 homologue (viral IL-6) induces endogenous human IL-6 secretion. Journal of Medical Virology, 2000, 61, 332-335.	2.5	69
113	Comparison of the Complete DNA Sequences of Human Herpesvirus 6 Variants A and B. Journal of Virology, 1999, 73, 8053-8063.	1.5	224
114	Analysis of Human Herpesvirus 6 U3 Gene, which Is a Positional Homolog of Human Cytomegalovirus UL 24 Gene. Virology, 1998, 249, 129-139.	1.1	27