Jin Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551919/publications.pdf

Version: 2024-02-01

261 papers 22,032 citations

19608 61 h-index 9553 142 g-index

261 all docs

261 does citations

times ranked

261

19467 citing authors

#	Article	IF	CITATIONS
1	Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science, 2007, 317, 222-225.	6.0	3,142
2	Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381-385.	13.7	2,095
3	Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2008, 130, 3619-3623.	6.6	1,511
4	Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule, 2019, 3, 2179-2192.	11.7	1,228
5	Conformal quantum dot–SnO ₂ layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375, 302-306.	6.0	872
6	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	6.6	643
7	Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics, 2013, 7, 732-738.	15.6	501
8	Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7, 80-85.	8.2	459
9	Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 2020, 368, 155-160.	6.0	420
10	25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter entury of Advances. Advanced Materials, 2013, 25, 4986-5010.	11.1	419
11	Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Selfâ€Organized Polymeric Hole Extraction Layers with High Work Function. Advanced Materials, 2014, 26, 6461-6466.	11.1	321
12	Smallâ€Bandgap Polymer Solar Cells with Unprecedented Shortâ€Circuit Current Density and High Fill Factor. Advanced Materials, 2015, 27, 3318-3324.	11.1	294
13	Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6, 7348.	5.8	281
14	Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6, 6679.	2.8	275
15	Multipositional Silica-Coated Silver Nanoparticles for High-Performance Polymer Solar Cells. Nano Letters, 2013, 13, 2204-2208.	4.5	244
16	Combination of Titanium Oxide and a Conjugated Polyelectrolyte for Highâ€Performance Invertedâ€Type Organic Optoelectronic Devices. Advanced Materials, 2011, 23, 2759-2763.	11.1	242
17	Effect of the Molecular Weight of Poly(3â€hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells. Macromolecular Rapid Communications, 2007, 28, 1776-1780.	2.0	226
18	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	11.1	213

#	Article	IF	CITATIONS
19	Functionalized Methanofullerenes Used as n-Type Materials in Bulk-Heterojunction Polymer Solar Cells and in Field-Effect Transistors. Journal of the American Chemical Society, 2008, 130, 6444-6450.	6.6	208
20	High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Letters, 2015, 15, 7691-7696.	4.5	198
21	Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices. Nano Letters, 2015, 15, 7933-7942.	4.5	196
22	Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. Journal of Materials Chemistry, 2011, 21, 3438-3442.	6.7	194
23	Amineâ€Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells. Advanced Materials, 2014, 26, 494-500.	11.1	159
24	Highâ€Performance Organic Optoelectronic Devices Enhanced by Surface Plasmon Resonance. Advanced Materials, 2011, 23, 5689-5693.	11.1	152
25	Interplay of Intramolecular Noncovalent Coulomb Interactions for Semicrystalline Photovoltaic Polymers. Chemistry of Materials, 2015, 27, 5997-6007.	3.2	150
26	Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1502109.	10.2	147
27	High-Temperature–Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells. ACS Nano, 2017, 11, 6057-6064.	7.3	142
28	High-efficiency polymer solar cells with a cost-effective quinoxaline polymer through nanoscale morphology control induced by practical processing additives. Energy and Environmental Science, 2013, 6, 1909.	15.6	137
29	Highly Efficient Polymer Light-Emitting Diodes Using Graphene Oxide as a Hole Transport Layer. ACS Nano, 2012, 6, 2984-2991.	7.3	127
30	Recent progress in indoor organic photovoltaics. Nanoscale, 2020, 12, 5792-5804.	2.8	126
31	Doubleâ€Sided Junctions Enable Highâ€Performance Colloidalâ€Quantumâ€Dot Photovoltaics. Advanced Materials, 2016, 28, 4142-4148.	11.1	121
32	Poly(fluorenevinylene) Derivative by Gilch Polymerization for Light-Emitting Diode Applications. Macromolecules, 2002, 35, 7532-7534.	2.2	119
33	Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electronâ€Transport Layers. Advanced Materials, 2013, 25, 4783-4788.	11.1	111
34	A Selenophene Analogue of PCDTBT: Selective Fine-Tuning of LUMO to Lower of the Bandgap for Efficient Polymer Solar Cells. Macromolecules, 2012, 45, 8658-8664.	2.2	110
35	Silver-Based Nanoparticles for Surface Plasmon Resonance in Organic Optoelectronics. Particle and Particle Systems Characterization, 2015, 32, 164-175.	1.2	106
36	Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Letters, 2017, 17, 6385-6390.	4.5	106

#	Article	IF	CITATIONS
37	Graphene Oxide Nanoribbon as Hole Extraction Layer to Enhance Efficiency and Stability of Polymer Solar Cells. Advanced Materials, 2014, 26, 786-790.	11.1	102
38	Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. Journal of Materials Chemistry A, 2019, 7, 1107-1114.	5.2	100
39	Semicrystalline D–A Copolymers with Different Chain Curvature for Applications in Polymer Optoelectronic Devices. Macromolecules, 2014, 47, 1604-1612.	2.2	95
40	An Organic Surface Modifier to Produce a High Work Function Transparent Electrode for High Performance Polymer Solar Cells. Advanced Materials, 2015, 27, 892-896.	11.1	94
41	Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices. Journal of Materials Chemistry, 2011, 21, 2051.	6.7	93
42	Single Component Organic Solar Cells Based on Oligothiopheneâ€Fullerene Conjugate. Advanced Functional Materials, 2017, 27, 1702474.	7.8	91
43	Synthesis of PCDTBT-Based Fluorinated Polymers for High Open-Circuit Voltage in Organic Photovoltaics: Towards an Understanding of Relationships between Polymer Energy Levels Engineering and Ideal Morphology Control. ACS Applied Materials & Diterfaces, 2014, 6, 7523-7534.	4.0	88
44	Synthesis and Electroluminescence Properties of Poly(9,9-di-n-octylfluorenyl-2,7-vinylene) Derivatives for Light-Emitting Displayâ€. Macromolecules, 2003, 36, 3841-3847.	2.2	85
45	Investigation of Charge Carrier Behavior in High Performance Ternary Blend Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600637.	10.2	85
46	Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells. Energy and Environmental Science, 2018, 11, 3248-3255.	15.6	85
47	High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy and Environmental Science, 2017, 10, 1443-1455.	15.6	84
48	Carrier generation and transport in bulk heterojunction films processed with 1,8-octanedithiol as a processing additive. Journal of Applied Physics, 2008, 104, .	1.1	78
49	Synthesis of a New Cross-Linkable Perfluorocyclobutane-Based Hole-Transport Material. Organic Letters, 2006, 8, 4703-4706.	2.4	73
50	Design, Synthesis, and Electroluminescent Property of CNâ^'Poly(dihexylfluorenevinylene) for LEDs. Macromolecules, 2003, 36, 6970-6975.	2.2	71
51	Stabilized Blue Emission from Organic Light-Emitting Diodes Using Poly(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[def]phenanthrene)). Macromolecules, 2005, 38, 6285-6289.	2.2	70
52	Stabilized Polymers with Novel Indenoindene Backbone against Photodegradation for LEDs and Solar Cells. Macromolecules, 2008, 41, 7296-7305.	2.2	70
53	Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles. Energy and Environmental Science, 2013, 6, 1949.	15.6	69
54	Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nature Communications, 2015, 6, 7772.	5.8	68

#	Article	IF	Citations
55	Electroluminescence in polymer-fullerene photovoltaic cells. Applied Physics Letters, 2005, 86, 183502.	1.5	67
56	Nanoparticleâ€Enhanced Silverâ€Nanowire Plasmonic Electrodes for Highâ€Performance Organic Optoelectronic Devices. Advanced Materials, 2018, 30, e1800659.	11.1	67
57	Engineering the morphology <i>via</i> processing additives in multiple all-polymer solar cells for improved performance. Journal of Materials Chemistry A, 2018, 6, 10421-10432.	5.2	65
58	Novel Electroluminescent Polymers with Fluoro Groups in Vinylene Units. Macromolecules, 2004, 37, 6711-6715.	2.2	63
59	Reduced Graphene Oxide (rGO)-Wrapped Fullerene (C ₆₀) Wires. ACS Nano, 2011, 5, 8365-8371.	7.3	63
60	Improved Performance in Polymer Solar Cells Using Mixed PC ₆₁ BM/PC ₇₁ BM Acceptors. Advanced Energy Materials, 2015, 5, 1401687.	10.2	63
61	Slotâ€Die and Rollâ€ŧoâ€Roll Processed Single Junction Organic Photovoltaic Cells with the Highest Efficiency. Advanced Energy Materials, 2019, 9, 1901805.	10.2	62
62	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Advanced Energy Materials, 2020, 10, 2000768.	10.2	62
63	Efficient Conventional―and Invertedâ€Type Photovoltaic Cells Using a Planar Alternating Polythiophene Copolymer. Chemistry - A European Journal, 2012, 18, 2551-2558.	1.7	61
64	Reversible, Full-Color Luminescence by Post-treatment of Perovskite Nanocrystals. Joule, 2018, 2, 2105-2116.	11.7	61
65	Vivid and Fully Saturated Blue Light-Emitting Diodes Based on Ligand-Modified Halide Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 23401-23409.	4.0	60
66	Inverted Colloidal Quantum Dot Solar Cells. Advanced Materials, 2014, 26, 3321-3327.	11.1	59
67	A universal processing additive for high-performance polymer solar cells. RSC Advances, 2017, 7, 7476-7482.	1.7	58
68	Syntheses and properties of electroluminescent polyfluorene-based conjugated polymers, containing oxadiazole and carbazole units as pendants, for LEDs. Polymer, 2005, 46, 12158-12165.	1.8	57
69	Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene. Applied Physics Letters, 2006, 89, 153505.	1.5	56
70	Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 5826-5833.	7.3	56
71	Highly Crystalline and Low Bandgap Donor Polymers for Efficient Polymer Solar Cells. Advanced Materials, 2012, 24, 538-542.	11.1	53
72	Easily Attainable Phenothiazine-Based Polymers for Polymer Solar Cells: Advantage of Insertion of <i>S</i> , <i>S</i> -dioxides into its Polymer for Inverted Structure Solar Cells. Macromolecules, 2012, 45, 1847-1857.	2.2	52

#	Article	lF	CITATIONS
73	Nanoscopic Management of Molecular Packing and Orientation of Small Molecules by a Combination of Linear and Branched Alkyl Side Chains. ACS Nano, 2014, 8, 5988-6003.	7.3	52
74	Alkoxybenzothiadiazole-Based Fullerene and Nonfullerene Polymer Solar Cells with High Shunt Resistance for Indoor Photovoltaic Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3885-3894.	4.0	52
75	Efficient Exciton Diffusion in Organic Bilayer Heterojunctions with Nonfullerene Small Molecular Acceptors. ACS Energy Letters, 2020, 5, 1628-1635.	8.8	52
76	Green-solvent processable semiconducting polymers applicable in additive-free perovskite and polymer solar cells: molecular weights, photovoltaic performance, and thermal stability. Journal of Materials Chemistry A, 2018, 6, 5538-5543.	5.2	51
77	Quinoxaline–thiophene based thick photovoltaic devices with an efficiency of â^¼8%. Journal of Materials Chemistry A, 2016, 4, 9967-9976.	5.2	49
78	Ladder-type heteroacenepolymers bearing carbazole and thiophene ring units and their use in field-effect transistors and photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 843-850.	6.7	48
79	Photocurrent Extraction Efficiency near Unity in a Thick Polymer Bulk Heterojunction. Advanced Functional Materials, 2016, 26, 3324-3330.	7.8	48
80	Interfacial engineering for highly efficient organic solar cells. Current Applied Physics, 2017, 17, 370-391.	1.1	47
81	Study of Burnâ€in Loss in Green Solventâ€Processed Ternary Blended Organic Photovoltaics Derived from UVâ€Crosslinkable Semiconducting Polymers and Nonfullerene Acceptors. Advanced Energy Materials, 2019, 9, 1901829.	10.2	47
82	Bulk Heterojunction Materials Composed of Poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- <i>b</i> jthiophene): Ultrafast Electron Transfer and Carrier Recombination. Journal of Physical Chemistry C, 2008, 112, 7853-7857.	1.5	44
83	Spectroscopically tracking charge separation in polymer : fullerene blends with a three-phase morphology. Energy and Environmental Science, 2015, 8, 2713-2724.	15.6	44
84	Device Architectures for Enhanced Photon Recycling in Thinâ€Film Multijunction Solar Cells. Advanced Energy Materials, 2015, 5, 1400919.	10.2	41
85	Peroptronic devices: perovskite-based light-emitting solar cells. Energy and Environmental Science, 2017, 10, 1950-1957.	15.6	41
86	A synthetic approach to a fullerene-rich dendron and its linear polymer via ring-opening metathesis polymerization. Chemical Communications, 2011, 47, 3078.	2.2	40
87	Synthesis of fluorinated analogues of a practical polymer TQ for improved open-circuit voltages in polymer solar cells. Polymer Chemistry, 2014, 5, 2540.	1.9	40
88	Dithienogermoleâ€Containing Smallâ€Molecule Solar Cells with 7.3% Efficiency: Inâ€Depth Study on the Effects of Heteroatom Substitution of Si with Ge. Advanced Energy Materials, 2015, 5, 1402044.	10.2	40
89	Toward the Realization of A Practical Diketopyrrolopyrroleâ€Based Small Molecule for Improved Efficiency in Ternary BHJ Solar Cells. Macromolecular Rapid Communications, 2012, 33, 140-145.	2.0	39
90	Effects of Ionic Liquid Molecules in Hybrid PbS Quantum Dot–Organic Solar Cells. ACS Applied Materials & Double (1975) According to the Materials & Dou	4.0	39

#	Article	IF	Citations
91	Plasmonic Transition via Interparticle Coupling of Au@Ag Core–Shell Nanostructures Sheathed in Double Hydrophilic Block Copolymer for High-Performance Polymer Solar Cell. Chemistry of Materials, 2015, 27, 4789-4798.	3.2	39
92	Pseudohalides in Leadâ€Based Perovskite Semiconductors. Advanced Materials, 2019, 31, e1807029.	11.1	39
93	High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers. Applied Physics Letters, 2011, 99, 163305.	1.5	38
94	Color-Tunable Electroluminescent Polymers by Substitutents on the Poly(p-phenylenevinylene) Derivatives for Light-Emitting Diodes. Chemistry of Materials, 2002, 14, 5090-5097.	3.2	37
95	The effect of introducing a buffer layer to polymer solar cells on cell efficiency. Solar Energy Materials and Solar Cells, 2011, 95, 1119-1122.	3.0	37
96	Simultaneous Enhancement of Solar Cell Efficiency and Photostability via Chemical Tuning of Electron Donating Units in Diketopyrrolopyrrole-Based Push–Pull Type Polymers. Macromolecules, 2014, 47, 6270-6280.	2.2	37
97	A thermally stable, barium-stabilized î±-CsPbI ₃ perovskite for optoelectronic devices. Journal of Materials Chemistry A, 2019, 7, 21740-21746.	5.2	37
98	Organic photovoltaic cells based on conjugated polymer/fullerene composites. Current Applied Physics, 2001, 1, 139-143.	1.1	36
99	Highly Stable Bulk Perovskite for Blue LEDs with Anion-Exchange Method. Nano Letters, 2021, 21, 3473-3479.	4.5	36
100	Highly Efficient Red-Emitting Hybrid Polymer Light-Emitting Diodes via Förster Resonance Energy Transfer Based on Homogeneous Polymer Blends with the Same Polyfluorene Backbone. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5690-5695.	4.0	35
101	High-Resolution Filtration Patterning of Silver Nanowire Electrodes for Flexible and Transparent Optoelectronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 32154-32162.	4.0	35
102	Photovoltaic effects on the organic ambipolar field-effect transistors. Applied Physics Letters, 2007, 90, 063511.	1.5	34
103	Improved electron injection in polymer light-emitting diodes using anionic conjugated polyelectrolyte. Applied Physics Letters, 2008, 93, .	1.5	34
104	Replacing the metal oxide layer with a polymer surface modifier for high-performance inverted polymer solar cells. RSC Advances, 2014, 4, 4791-4795.	1.7	34
105	Thienoisoindigo (TIIG)-based small molecules for the understanding of structure–property–device performance correlations. Journal of Materials Chemistry A, 2015, 3, 9899-9908.	5.2	33
106	Photophysical pathways in efficient bilayer organic solar cells: The importance of interlayer energy transfer. Nano Energy, 2021, 84, 105924.	8.2	33
107	High-yield synthesis of single-crystal silicon nanoparticles as anode materials of lithium ion batteries via photosensitizer-assisted laser pyrolysis. Journal of Materials Chemistry A, 2014, 2, 18070-18075.	5 . 2	32
108	Multilayer bipolar field-effect transistors. Applied Physics Letters, 2008, 92, 063505.	1.5	31

#	Article	IF	CITATIONS
109	Towards optimization of P3HT:bisPCBM composites for highly efficient polymer solar cells. Journal of Materials Chemistry, 2010, 20, 7710.	6.7	31
110	Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synthetic Metals, 2012, 162, 1169-1176.	2.1	31
111	Ultrafast Charge Transfer in Operating Bulk Heterojunction Solar Cells. Advanced Materials, 2015, 27, 2036-2041.	11.1	31
112	Functionalized PFN-X (X = Cl, Br, or I) for Balanced Charge Carriers of Highly Efficient Blue Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35740-35747.	4.0	31
113	Naphthalene diimide-based small molecule acceptors for fullerene-free organic solar cells. Solar Energy, 2017, 150, 90-95.	2.9	30
114	Thermally Durable Nonfullerene Acceptor with Nonplanar Conjugated Backbone for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2020, 10, 1903585.	10.2	30
115	High mobility solution-processed hybrid light emitting transistors. Applied Physics Letters, 2014, 105, 183302.	1.5	29
116	Conformal Fabrication of Colloidal Quantum Dot Solids for Optically Enhanced Photovoltaics. ACS Nano, 2015, 9, 5447-5453.	7.3	29
117	Highly Asymmetric n ⁺ –p Heterojunction Quantumâ€Dot Solar Cells with Significantly Improved Chargeâ€Collection Efficiencies. Advanced Materials, 2016, 28, 1780-1787.	11.1	29
118	Straight chain D–A copolymers based on thienothiophene and benzothiadiazole for efficient polymer field effect transistors and photovoltaic cells. Polymer Chemistry, 2016, 7, 4638-4646.	1.9	29
119	A highly transparent thin film hematite with multi-element dopability for an efficient unassisted water splitting system. Nano Energy, 2020, 76, 105089.	8.2	29
120	Machine learning-assisted development of organic photovoltaics <i>via</i> high-throughput <i>in situ</i> formulation. Energy and Environmental Science, 2021, 14, 3438-3446.	15.6	29
121	Control of Charge Dynamics via Use of Nonionic Phosphonate Chains and Their Effectiveness for Inverted Structure Solar Cells. Advanced Energy Materials, 2015, 5, 1500844.	10.2	28
122	Morphology-Dependent Hole Transfer under Negligible HOMO Difference in Non-Fullerene Acceptor-Based Ternary Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7208-7215.	4.0	28
123	Circularly Polarized Emission from Organic–Inorganic Hybrid Perovskites <i>via</i> Chiral Fano Resonances. ACS Nano, 2021, 15, 13781-13793.	7.3	28
124	Copolymers Comprising 2,7 arbazole and Bisâ€benzothiadiazole Units for Bulkâ€Heterojunction Solar Cells. Chemistry - A European Journal, 2011, 17, 14681-14688.	1.7	27
125	Replacing 2,1,3-benzothiadiazole with 2,1,3-naphthothiadiazole in PCDTBT: towards a low bandgap polymer with deep HOMO energy level. Polymer Chemistry, 2012, 3, 3276.	1.9	27
126	Optimal top electrodes for inverted polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 2152-2159.	1.3	27

#	Article	IF	CITATIONS
127	Unfolding the Influence of Metal Doping on Properties of CsPbl ₃ Perovskite. Small Methods, 2020, 4, 2000296.	4.6	27
128	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	1.9	26
129	Defect-Induced <i>in Situ</i> Atomic Doping in Transition Metal Dichalcogenides via Liquid-Phase Synthesis toward Efficient Electrochemical Activity. ACS Nano, 2020, 14, 17114-17124.	7.3	26
130	Fabrication of gold dot, ring, and corpuscle arrays from block copolymer templates via a simple modification of surface energy. Nanoscale, 2011, 3, 5007.	2.8	25
131	Synthesis and characterization of a bis-methanofullerene-4-nitro- \hat{l} ±-cyanostilbene dyad as a potential acceptor for high-performance polymer solar cells. Tetrahedron, 2012, 68, 6696-6700.	1.0	25
132	Acid-functionalized fullerenes used as interfacial layer materials in inverted polymer solar cells. Organic Electronics, 2013, 14, 3138-3145.	1.4	25
133	Aesthetic and colorful: Dichroic polymer solar cells using high-performance Fabry-Pérot etalon electrodes with a unique Sb2O3 cavity. Nano Energy, 2020, 77, 105146.	8.2	25
134	High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 2020, 10, 18055.	1.6	25
135	A First Approach to White Organic Electroluminescence Device from a Single Rodâ€Coil Poly[thiopheneâ€ <i>block</i> à€(<i>N</i> â€vinylcarbazole)] Diblock Copolymer. Macromolecular Rapid Communications, 2010, 31, 2047-2052.	2.0	24
136	Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 712-718.	8.8	24
137	Efficiency Exceeding 11% in Tandem Polymer Solar Cells Employing High Openâ€Circuit Voltage Wideâ€Bandgap Ï€â€Conjugated Polymers. Advanced Energy Materials, 2017, 7, 1700782.	10.2	24
138	Enhanced open circuit voltage by hydrophilic ionic liquids as buffer layer in conjugated polymer–nanoporous titania hybrid solar cells. Physical Chemistry Chemical Physics, 2010, 12, 15309.	1.3	23
139	Structural and morphological tuning of dithienobenzodithiophene-core small molecules for efficient solution processed organic solar cells. Dyes and Pigments, 2015, 115, 23-34.	2.0	22
140	Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells. Small Methods, 2020, 4, 2000065.	4.6	22
141	High-Performance Perovskite Light-Emitting Diodes with Surface Passivation of CsPbBr <i>_×</i> I _{3–<i>×</i>Ion-Exchange. ACS Applied Materials & Interfaces, 2020, 12, 31582-31590.}	4.0	22
142	Inverted Polymer Solar Cells with Annealingâ€Free Solutionâ€Processable NiO. Small, 2021, 17, e2101729.	5.2	22
143	Size tailoring of aqueous germanium nanoparticle dispersions. Nanoscale, 2014, 6, 10156-10160.	2.8	21
144	Dithienogermole-Based Nonfullerene Acceptors: Roles of the Side-Chains' Direction and Development of Green-Tinted Efficient Semitransparent Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 7689-7698.	2.5	21

#	Article	IF	CITATIONS
145	A donor–acceptor semiconducting polymer with a random configuration for efficient, green-solvent-processable flexible solar cells. Journal of Materials Chemistry A, 2018, 6, 24580-24587.	5.2	20
146	Improved performance of polymer light-emitting diodes with nanocomposites. Applied Physics Letters, 2009, 94, .	1.5	19
147	Solution-processed CdS transistors with high electron mobility. RSC Advances, 2014, 4, 3153-3157.	1.7	19
148	Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends. Scientific Reports, 2014, 4, 7154.	1.6	19
149	Highly efficient polymer solar cells with a thienopyrroledione and benzodithiophene containing planar random copolymer. Polymer Chemistry, 2018, 9, 1216-1222.	1.9	19
150	Synthesis and characterization of fluorene-carbazole and fluorene-phenothiazine copolymers with carbazole and oxadiazole pendants for organic light emitting diodes. Polymer, 2010, 51, 6174-6181.	1.8	18
151	Hybrid organic-inorganic light-emitting electrochemical cells using fluorescent polymer and ionic liquid blend as an active layer. Applied Physics Letters, 2011, 98, 253309.	1.5	18
152	Enhanced performance of polymer bulk heterojunction solar cells employing multifunctional iridium complexes. Journal of Materials Chemistry C, 2014, 2, 10195-10200.	2.7	18
153	Synergistic photocurrent addition in hybrid quantum dot: Bulk heterojunction solar cells. Nano Energy, 2015, 13, 491-499.	8.2	18
154	Conjugated polymers containing 6-(2-thienyl)-4H-thieno[3,2-b]indole (TTI) and isoindigo for organic photovoltaics. Polymer, 2016, 95, 36-44.	1.8	18
155	Light-Emitting Transistors with High Color Purity Using Perovskite Quantum Dot Emitters. ACS Applied Materials & Dot Emitters. ACS Applied Materials & Dot Emitters. ACS	4.0	18
156	A new small molecule acceptor based on indaceno[2,1-b:6,5-b']dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. Dyes and Pigments, 2018, 148, 263-269.	2.0	17
157	Implementation of Lowâ€Power Electronic Devices Using Solutionâ€Processed Tantalum Pentoxide Dielectric. Advanced Functional Materials, 2018, 28, 1704215.	7.8	17
158	Multifunctional Conjugated Polymers with Mainâ€Chain Donors and Sideâ€Chain Acceptors for Dye Sensitized Solar Cells (DSSCs) and Organic Photovoltaic Cells (OPVs). Macromolecular Rapid Communications, 2011, 32, 1809-1814.	2.0	16
159	Synthesis and properties of low band gap polymers based on thienyl thienoindole as a new electron-rich unit for organic photovoltaics. Polymer Chemistry, 2015, 6, 6011-6020.	1.9	16
160	Effect of Heterocyclic Anchoring Sequence on the Properties of Dithienogermole-Based Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells.	4.0	16
161	Origin of the luminescence spectra width in perovskite nanocrystals with surface passivation. Nanoscale, 2020, 12, 21695-21702.	2.8	16
162	A Roundabout Approach to Control Morphological Orientation and Solarâ€Cell Performance by Modulating Sideâ€Chain Branching Position in Benzodithiopheneâ€Based Polymers. ChemPhysChem, 2015, 16, 1305-1314.	1.0	15

#	Article	IF	Citations
163	Benzodithiophene-thiophene-based photovoltaic polymers with different side-chains. Journal of Polymer Science Part A, 2015, 53, 854-862.	2.5	15
164	2,2-dimethyl-2H-benzimidazole based small molecules for organic solar cells. Macromolecular Research, 2015, 23, 214-222.	1.0	15
165	Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells. Journal of Materials Chemistry A, 2020, 8, 1326-1334.	5.2	15
166	Dichroic Sb 2 O 3 /Ag/Sb 2 O 3 Electrodes for Colorful Semitransparent Organic Solar Cells. Solar Rrl, 2020, 4, 2000201.	3.1	15
167	The influence of tetrakis-ethylhexyloxy groups substituted in PPV derivative for PLEDs. Polymer, 2008, 49, 467-473.	1.8	14
168	Correlation between Polymer Structure and Polymer:Fullerene Blend Morphology and Its Implications for High Performance Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 2237-2244.	1.5	14
169	Trifluoromethyl benzimidazole-based conjugated polymers with deep HOMO levels for organic photovoltaics. Synthetic Metals, 2015, 205, 112-120.	2.1	14
170	Roll-to-roll compatible quinoxaline-based polymers toward high performance polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 25208-25216.	5.2	14
171	Effects on Photovoltaic Characteristics by Organic Bilayer- and Bulk-Heterojunctions: Energy Losses, Carrier Recombination and Generation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55945-55953.	4.0	14
172	Synthesis of the pyrrolo[3,2-b]pyrrole-based copolymer with enhanced open circuit voltage. Synthetic Metals, 2012, 162, 2288-2293.	2.1	13
173	Capacity retention behavior and morphology evolution of Si <i>>_x</i> >Ge _{1â^'<i>>x</i>>li>} nanoparticles as lithium-ion battery anode. Nanotechnology, 2015, 26, 255702.	1.3	13
174	Ambient-Stable Cubic-Phase Hybrid Perovskite Reaching the Shockley–Queisser Fill Factor Limit via Inorganic Additive-Assisted Process. ACS Applied Energy Materials, 2018, 1, 5865-5871.	2.5	13
175	Effect of Substituents of Thienylene–Vinylene–Thienylene-Based Conjugated Polymer Donors on the Performance of Fullerene and Nonfullerene Solar Cells. Journal of Physical Chemistry C, 2018, 122, 16613-16623.	1.5	13
176	Observation of ambipolar field-effect behavior in donor–acceptor conjugated copolymers. Journal of Materials Chemistry, 2012, 22, 21238.	6.7	12
177	2,5-di(thiophen-2-yl)thiazolo[5,4-d]thiazole-based donor–acceptor type copolymers for photovoltaic cells. Current Applied Physics, 2012, 12, 11-16.	1.1	12
178	Silicon nanoparticle size-dependent open circuit voltage in an organic–inorganic hybrid solar cell. Current Applied Physics, 2014, 14, 127-131.	1.1	12
179	Conjugated Polyelectrolytes Bearing Various Ion Densities: Spontaneous Dipole Generation, Polingâ&Induced Dipole Alignment, and Interfacial Energy Barrier Control for Optoelectronic Device Applications. Advanced Materials, 2018, 30, e1706034.	11.1	12
180	The introduction of a perovskite seed layer for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 20138-20144.	5.2	12

#	Article	IF	CITATIONS
181	One-step formation of core/shell structure based on hydrophobic silane ligands for enhanced luminescent perovskite quantum dots. Journal of Alloys and Compounds, 2021, 886, 161347.	2.8	12
182	Suppression of halide migration and immobile ionic surface passivation for blue perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 2060-2066.	2.7	12
183	Synthesis and properties of polyfluorene, containing oxadiazole and carbazole units as pendants for white light-emitting diodes. Thin Solid Films, 2008, 516, 7373-7380.	0.8	11
184	High-efficiency, hybrid Si/C60 heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 16410-16417.	5.2	11
185	Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells. Scientific Reports, 2016, 6, 36608.	1.6	11
186	Influence of the Crystalline Nature of Small Donors Molecules on the Efficiency and Stability of Organic Photovoltaic Devices. Solar Rrl, 2018, 2, 1700235.	3.1	11
187	Fast vaporizing anti-solvent for high crystalline perovskite to achieve high performance perovskite solar cells. Thin Solid Films, 2018, 661, 122-127.	0.8	11
188	Pyrrolo[3,2-b]pyrrole based small molecules as donor materials for OPVs. Solar Energy Materials and Solar Cells, 2013, 112, 120-126.	3.0	10
189	Effect of asymmetric solubility of diketopyrrolopyrrole-based polymers and PC71BMs in a binary solvent system on the performance of bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2014, 124, 232-240.	3.0	10
190	Enhancement of Organic Photovoltaic Efficiency via Nanomorphology Control using Conjugated Polymers Incorporating Fullerene Compatible Side-Chains. Macromolecules, 2015, 48, 337-345.	2.2	10
191	Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Advances, 2018, 8, 24110-24115.	1.7	10
192	Importance of interface engineering between the hole transport layer and the indium-tin-oxide electrode for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 15394-15403.	5.2	10
193	Fullerene-Based Photoactive A-D-A Triads for Single-Component Organic Solar Cells: Incorporation of Non-Fused Planar Conjugated Core. Macromolecular Research, 2021, 29, 871-881.	1.0	10
194	Production of pristine, sulfur-coated and silicon-alloyed germanium nanoparticles via laser pyrolysis. Nanotechnology, 2015, 26, 305703.	1.3	9
195	Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light Absorption in Polymer Solar Cells. Journal of Physical Chemistry C, 2017, 121, 17569-17576.	1.5	9
196	Modeling and implementation of tandem polymer solar cells using wideâ€bandgap front cells. , 2020, 2, 131-142.		9
197	Waterproof perovskites: high fluorescence quantum yield and stability from a methylammonium lead bromide/formate mixture in water. Journal of Materials Chemistry C, 2020, 8, 5873-5881.	2.7	9
198	Non-fullerene polymer solar cells based on quinoxaline units with fluorine atoms. Synthetic Metals, 2021, 272, 116655.	2.1	9

#	Article	IF	CITATIONS
199	Exploiting Ternary Blends to Accurately Control the Coloration of Semitransparent, Nonâ€Fullerene, Organic Solar Cells. Solar Rrl, 2021, 5, 2000742.	3.1	9
200	Synthesis and photovoltaic properties of copolymers based on 2,2-(1,5-pentamethylene)-2H-benzimidazole. Synthetic Metals, 2012, 162, 225-230.	2.1	8
201	A simultaneous achievement of high performance and extended thermal stability of bulk-heterojunction polymer solar cells using a polythiophene–fullerene block copolymer. Solar Energy Materials and Solar Cells, 2012, 104, 7-12.	3.0	8
202	Synthesis of the novel 2,2-bithiophene-3,3-dicarboximide-based conjugated copolymers for OPVs. Synthetic Metals, 2013, 177, 65-71.	2.1	8
203	Reversed organic–inorganic hybrid tandem solar cells for improved interfacial series resistances and balanced photocurrents. Synthetic Metals, 2013, 175, 103-107.	2.1	8
204	Dithieno[2,3â€d:2',3'â€d']benzo[1,2â€b:4,5â€b']dithiophene (DTBDAT)â€based copolymers for highâ€performar organic solar cells. Journal of Polymer Science Part A, 2016, 54, 3182-3192.	nce 2.5	8
205	Photovoltaic polymers based on difluoroqinoxaline units with deep <scp>HOMO</scp> levels. Journal of Polymer Science Part A, 2018, 56, 1489-1497.	2.5	8
206	Twisted Linker Effect on Naphthalene Diimideâ€Based Dimer Electron Acceptors for Nonâ€fullerene Organic Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1800108.	2.0	8
207	Silicon Nanocanyon: One-Step Bottom-Up Fabrication of Black Silicon via in-Lasing Hydrophobic Self-Clustering of Silicon Nanocrystals for Sustainable Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36523-36530.	4.0	8
208	Elimination of Charge Transfer Energy Loss by Introducing a Small-Molecule Secondary Donor into Fullerene-Based Polymer Solar Cells. ACS Applied Energy Materials, 2020, 3, 8375-8382.	2.5	8
209	Planar Organic Bilayer Heterojunctions Fabricated on Water with Ultrafast Donorâ€ŧoâ€Acceptor Charge Transfer. Solar Rrl, 2021, 5, 2100326.	3.1	8
210	Fullerene-Based Triads with Controlled Alkyl Spacer Length as Photoactive Materials for Single-Component Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43174-43185.	4.0	8
211	Hetero-tandem organic solar cells drive water electrolysis with a solar-to-hydrogen conversion efficiency up to 10%. Applied Catalysis B: Environmental, 2022, 309, 121237.	10.8	8
212	Optical spectroscopic characterization of plasma-polymerized thin films. Thin Solid Films, 2003, 423, 131-135.	0.8	7
213	New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide layer., 2006,,.		7
214	Low bandgap small molecules based on 2,2-bithiophene-3,3-dicarboximide for soluble-processed solar cells. Synthetic Metals, 2013, 183, 16-23.	2.1	7
215	A hybrid solar cell fabricated using amorphous silicon and a fullerene derivative. Physical Chemistry Chemical Physics, 2013, 15, 19913.	1.3	7
216	Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrole and Benzothiadiazoleâ€Based Semicrystalline Copolymer fo Photovoltaic Devices with Indeneâ€C ₆₀ Bisadduct. Macromolecular Chemistry and Physics, 2013, 214, 2083-2090.	r 1.1	7

#	ARTICLE	IF	CITATIONS
217	Designing a naphthyridinedione-based conjugated polymer for thickness-tolerant high efficiency polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 10846-10854.	5.2	7
218	A recent advances of blue perovskite light emitting diodes for next generation displays. Journal of Semiconductors, 2021, 42, 101608.	2.0	7
219	Molecular engineering of conjugated polymers for solar cells and fieldâ€effect transistors: Sideâ€chain versus mainâ€chain electron acceptors. Journal of Polymer Science Part A, 2012, 50, 271-279.	2.5	6
220	Synthesis and photovoltaic properties of alkoxy-benzimidazole containing low band gap polymers. Thin Solid Films, 2015, 580, 29-35.	0.8	6
221	Solution-processed, inverted organic solar cells with bilayered inorganic/organic electron extraction layers. RSC Advances, 2016, 6, 36561-36567.	1.7	6
222	Effect of alkyl chain topology on the structure, optoelectronic properties and solar cell performance of thienopyrroledione-cored oligothiophene chromophores. RSC Advances, 2016, 6, 77655-77665.	1.7	6
223	Synthesis and photovoltaic properties of three different types of terpolymers. Materials Chemistry Frontiers, 2017, 1, 1147-1155.	3.2	6
224	ZnO decorated germanium nanoparticles as anode materials in Li-ion batteries. Nanotechnology, 2017, 28, 095402.	1.3	6
225	Semi-crystalline A1–D–A2-type copolymers for efficient polymer solar cells. Polymer Journal, 2017, 49, 141-148.	1.3	6
226	Non-halogenated diphenyl-chalcogenide solvent processing additives for high-performance polymer bulk-heterojunction solar cells. RSC Advances, 2018, 8, 39777-39783.	1.7	6
227	Indoloindole-based small molecule bulk heterojunction small molecule solar cells. Dyes and Pigments, 2019, 161, 419-426.	2.0	6
228	Morphological and Optical Engineering for High-Performance Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4705-4711.	4.0	6
229	Synergistic combination of amorphous indium oxide with tantalum pentoxide for efficient electron transport in low-power electronics. Journal of Materials Chemistry C, 2019, 7, 4559-4566.	2.7	6
230	Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells (Adv.) Tj ETQq0 0 0 0	gBT1/Over	loc <u>k</u> 10 Tf 50
231	Syntheses and solar cell applications of conjugated copolymers containing tetrafluorophenylene units. Polymer, 2015, 71, 113-121.	1.8	5
232	2,1,3â€benzothiadiazoleâ€5,6â€dicarboxylicimide based semicrystalline polymers for photovoltaic cells. Journal of Polymer Science Part A, 2016, 54, 3826-3834.	2.5	5
233	Medium bandgap copolymers based on carbazole and quinoxaline exceeding $1.0\mathrm{V}$ open-circuit voltages. RSC Advances, 2016 , 6 , 17624 - 17631 .	1.7	5
234	The optimization of intermediate semi–bonding structure using solvent vapor annealing for high performance p-i-n structure perovskite solar cells. Organic Electronics, 2019, 65, 300-304.	1.4	5

#	Article	IF	CITATIONS
235	Mesoporous Trap of Molecular Sieves via Water-Selective Capture for Stable Perovskite Quantum Dots. ACS Sustainable Chemistry and Engineering, 2022, 10, 1115-1124.	3.2	5
236	Synthesis and photovoltaic properties of conjugated copolymers based on benzimidazole and various thiophene. Journal of Polymer Science Part A, 2011, 49, 3751-3758.	2.5	4
237	Vapor Coating Method Using Small-Molecule Organic Surface Modifiers to Replace N-Type Metal Oxide Layers in Inverted Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6504-6509.	4.0	4
238	2,7-Carbazole and thieno[3,4-c]pyrrole-4,6-dione based copolymers with deep highest occupied molecular orbital for photovoltaic cells. Current Applied Physics, 2015, 15, 654-661.	1.1	4
239	Syntheses of PCDTBT containing tetrafluorobenzene as electron-withdrawing group with deep HOMO energy level andÂapplications for photovoltaics. Polymer, 2016, 102, 84-91.	1.8	4
240	Synthesis and photovoltaic properties of benzimidazole-based copolymer with fluorine atom. Polymer Bulletin, 2016, 73, 2511-2519.	1.7	4
241	Reducing Burnâ€in Loss of Organic Photovoltaics by a Robust Electronâ€Transporting Layer. Advanced Materials Interfaces, 2019, 6, 1900213.	1.9	4
242	Substituent position-induced color tunability in polymer light-emitting diodes. Applied Physics Letters, 2002, 81, 1732-1734.	1.5	3
243	Syntheses and Properties of Copolymers with <i>N</i> â€Alkylâ€2,2â€2â€bithiopheneâ€3,3â€2â€dicarboximide U Polymer Solar Cells. Bulletin of the Korean Chemical Society, 2015, 36, 2238-2246.	nit for	3
244	Syntheses and solar cell applications of conjugated copolymers consisting of 3,3′-dicarboximide and benzodithiophene units with thiophene and bithiophene linkage. Solar Energy Materials and Solar Cells, 2015, 141, 24-31.	3.0	3
245	Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains. Science China Chemistry, 2017, 60, 528-536.	4.2	3
246	Regio-regular alternating diketopyrrolopyrrole-based D ₁ â€"Aâ€"D ₂ â€"A terpolymers for the enhanced performance of polymer solar cells. RSC Advances, 2019, 9, 42096-42109.	1.7	3
247	Flexible Organic Photovoltaics with Colorful Semi-Transparent Metal/Dielectric/Metal Top Electrode. ECS Journal of Solid State Science and Technology, 2021, 10, 065007.	0.9	3
248	Photovoltaic performance of bifunctional low band gap conjugated copolymer. Current Applied Physics, 2012, 12, 531-533.	1.1	2
249	Synthesis and TFT Properties of Fluorenyl Cored Conjugated Compound for Organic Thin Film Transistors. Journal of Nanoscience and Nanotechnology, 2016, 16, 2979-2982.	0.9	2
250	How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells. Journal of Physical Chemistry C, 0, , .	1.5	2
251	A low bandgap conjugated polymer bearing a phenazine moiety for application in organic solar cells. Synthetic Metals, 2022, 289, 117114.	2.1	2
252	The color tuning of PPV derivative by substituted tetrakis-ethylhexyloxy groups. , 2008, , .		1

#	Article	IF	Citations
253	Synthesis of a conjugated copolymer with benzodithiophene and benzimidazole units. Polymer Journal, 2013, 45, 555-559.	1.3	1
254	Synthesis of the Copolymer Based on Diketopyrrolopyrrole with Didecyl Chain for OPVs. Molecular Crystals and Liquid Crystals, 2014, 600, 88-98.	0.4	1
255	Syntheses and Properties of Conjugated Polymer with Thiopheneâ€Bridged BTI and Indenoindene Units for Organic Solar Cells. Bulletin of the Korean Chemical Society, 2016, 37, 506-514.	1.0	1
256	Design and photovoltaic properties of conjugated polymers based on quinoxaline and diketopyrrolopyrrole for OSCs. Synthetic Metals, 2022, 285, 117016.	2.1	1
257	New architecture for thermally stable high efficiency polymer solar cells. , 2005, 5938, 34.		O
258	Macromol. Rapid Commun. 23/2010. Macromolecular Rapid Communications, 2010, 31, .	2.0	0
259	Fabrication of Water Soluble Conjugated Polymers for WOLED. Molecular Crystals and Liquid Crystals, 2012, 567, 171-177.	0.4	O
260	Synthesis of Alkoxyaceneâ€Based Random Copolymers and Binary Solvent Additive for High Efficiency Organic Photovoltaics. Macromolecular Chemistry and Physics, 2019, 220, 1900409.	1.1	0
261	Design and synthesis of small molecules with difluoroquinoxaline units for OSCs. Molecular Crystals and Liquid Crystals, 2020, 705, 79-86.	0.4	O