Lianbang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. Journal of Power Sources, 2017, 342, 529-536.	4.0	200
2	Ultrathin Layered Hydroxide Cobalt Acetate Nanoplates Faceâ€toâ€Face Anchored to Graphene Nanosheets for Highâ€Efficiency Lithium Storage. Advanced Functional Materials, 2017, 27, 1605544.	7.8	103
3	C N x nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials. Journal of Chemical Physics, 2008, 129, 104703.	1.2	87
4	Do Transition Metal Carbonates Have Greater Lithium Storage Capability Than Oxides? A Case Study of Monodisperse CoCO3 and CoO Microspindles. ACS Applied Materials & Interfaces, 2014, 6, 12346-12352.	4.0	83
5	Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. Journal of Power Sources, 2020, 449, 227513.	4.0	68
6	Facile synthesis of MoS2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances, 2013, 3, 21675.	1.7	62
7	Synthesis and properties of Li3V2â^'xCex(PO4)3/C cathode materials for Li-ion batteries. Journal of Alloys and Compounds, 2012, 532, 49-54.	2.8	54
8	Micro/nano-complex-structure SiOx–PANI–Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3776.	5.2	53
9	Preparation and lithium storage performance of yolk–shell Si@void@C nanocomposites. Physical Chemistry Chemical Physics, 2015, 17, 17562-17565.	1.3	51
10	Multi-yolk–shell SnO ₂ /Co ₃ Sn ₂ @C Nanocubes with High Initial Coulombic Efficiency and Oxygen Reutilization for Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 35172-35179.	4.0	50
11	AB5-type hydrogen storage alloy used as anodic materials in borohydride fuel cell. Journal of Alloys and Compounds, 2005, 391, 318-322.	2.8	46
12	Li6V10O28, a novel cathode material for Li-ion battery. Electrochimica Acta, 2007, 52, 2945-2949.	2.6	43
13	Rare earth hydrogen storage alloy used in borohydride fuel cells. Electrochemistry Communications, 2005, 7, 1477-1481.	2.3	42
14	LmNi4.78Mn0.22 alloy modified with Si used as anodic materials in borohydride fuel cells. Journal of Alloys and Compounds, 2005, 397, 313-316.	2.8	41
15	Co2SiO4/SiO2/RGO nanosheets: Boosting the lithium storage capability of tetravalent Si by using highly-dispersed Co element. Electrochimica Acta, 2018, 282, 609-617.	2.6	41
16	Mesoporous Mn ₃ O ₄ Nanobeads/Graphene Hybrids: Facile Gel-Like Film Synthesis, Rational Structure Design, and Excellent Performance for Lithium Storage. Particle and Particle Systems Characterization, 2015, 32, 721-727.	1.2	39
17	Multilayered Sn–Zn–Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries. Journal of Power Sources, 2005, 141, 286-292.	4.0	37
18	Electroplated Sn-Zn Alloy Electrode for Li Secondary Batteries. Journal of the Electrochemical Society, 2003, 150, A1346.	1.3	35

LIANBANG WANG

#	Article	IF	CITATIONS
19	LaNi4.5Al0.5 alloy doped with Au used as anodic materials in a borohydride fuel cell. Journal of Power Sources, 2008, 184, 260-264.	4.0	31
20	Endoplasmic reticulum targeted fluorescent probe for the detection of hydrogen sulfide based on a twist-blockage strategy. Organic and Biomolecular Chemistry, 2019, 17, 8778-8783.	1.5	29
21	Polyethylenimine-modified bimetallic Au@Rh core–shell mesoporous nanospheres surpass Pt for pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 13080-13086.	5.2	29
22	Ultrafine, high-loading and oxygen-deficient cerium oxide embedded on mesoporous carbon nanosheets for superior lithium–oxygen batteries. Nano Energy, 2020, 71, 104570.	8.2	28
23	MnO QD/Graphene Dot Fabrics: A Versatile Nanohybrid Material. ChemElectroChem, 2015, 2, 789-794.	1.7	25
24	Microwave assisted sol–gel synthesis of chlorine doped lithium vanadium phosphate. Ceramics International, 2013, 39, 2165-2170.	2.3	23
25	Enhanced cycle ability of spinel LiMn2O4 by controlling the phase purity and structural strain. Journal of Physics and Chemistry of Solids, 2012, 73, 1390-1395.	1.9	21
26	Nano-sized spinel LiMn2O4 powder fabricated via modified dynamic hydrothermal synthesis. Ceramics International, 2013, 39, 3359-3364.	2.3	21
27	Spinel-Li3.5+xTi5O12 coated LiMn2O4 with high surface Mn valence for an enhanced cycling performance at high temperature. Electrochemistry Communications, 2013, 31, 92-95.	2.3	20
28	Size-dependent capacitive behavior of homogeneous MnO nanoparticles on carbon cloth as electrodes for symmetric solid-state supercapacitors with high performance. Electrochimica Acta, 2019, 307, 442-450.	2.6	20
29	Facile Synthesis of Amorphous Ge Supported by Ni Nanopyramid Arrays as an Anode Material for Sodiumâ€lon Batteries. ChemistryOpen, 2019, 8, 298-303.	0.9	19
30	Constructing Densely Compacted Graphite/Si/SiO ₂ Ternary Composite Anodes for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22323-22331.	4.0	19
31	Effect of pore lengths on the reduction degree and lithium storage performance of Mesoporous SiOx nanomaterials. Journal of Alloys and Compounds, 2016, 663, 524-530.	2.8	18
32	Highlyâ€Dispersed Niâ€QDs/Mesoporous Carbon Nanoplates: A Universal and Commercially Applicable Approach Based on Corn Straw Piths and High Capacitive Performances. ChemElectroChem, 2015, 2, 1897-1902.	1.7	17
33	Facile fabrication of compact LiFePO4/C composite with excellent atomically-efficient for high-energy-density Li-ion batteries. Journal of Power Sources, 2021, 496, 229759.	4.0	17
34	Uniform core–shell Cu ₆ Sn ₅ @C nanospheres with controllable synthesis and excellent lithium storage performances. RSC Advances, 2017, 7, 28399-28406.	1.7	15
35	Study on the multi-composition AB5 alloys including Li, made by the diffusion method, and their electrodes. Journal of Alloys and Compounds, 2000, 302, 65-69.	2.8	14
36	Three-dimensional porous copper framework supported group IVA element materials as sodium-ion battery anode materials. Journal of Alloys and Compounds, 2019, 771, 169-175.	2.8	14

LIANBANG WANG

#	Article	IF	CITATIONS
37	Surface coating of LiMn2O4 spinel via in situ hydrolysis route: effect of the solution. Ionics, 2013, 19, 739-745.	1.2	13
38	Excellent Lithium Storage Materials Consisting of Highly Distributed Fe3O4Quantum Dots on Commercially Available Graphite Nanoplates. Particle and Particle Systems Characterization, 2016, 33, 597-601.	1.2	13
39	Core–Shell CoSn@CoSnO _{<i>x</i>} Nanoparticles Encapsulated in Hollow Carbon Nanocubes as Anodes for Lithiumâ€ŀon Batteries. Energy Technology, 2021, 9, 2100153.	1.8	12
40	Preparation of Si-PPy-Ag composites and their electrochemical performance as anode for lithium-ion batteries. Ionics, 2013, 19, 401-407.	1.2	11
41	Electrochemical Characteristics of LaNi4.5Al0.5 Alloy Used as Anodic Catalyst in a Direct Borohydride Fuel Cell. Journal of Materials Science and Technology, 2011, 27, 46-50.	5.6	10
42	EDTA-2Na assisted dynamic hydrothermal synthesis of orthorhombic LiMnO2 for lithium ion battery. Journal of Alloys and Compounds, 2020, 830, 154599.	2.8	10
43	A one-step dynamic hydrothermal method for the synthesis of orthorhombic LiMnO2/CNTs nanocomposites networks for Li-ion batteries. Journal of Alloys and Compounds, 2021, 859, 157834.	2.8	9
44	Hierarchical porous carbon material regenerated from natural bamboo-leaf: How to improve the performance of lead-carbon batteries?. Journal of Power Sources, 2021, 516, 230664.	4.0	9
45	Three-dimensional macroporous Sn–Ag thin film anode prepared by electro-less reduction method: effect of micro-structure. Ionics, 2013, 19, 295-300.	1.2	8
46	Sub-10 nm SnO2/Fe3O4/graphene nanosheets: Nanocatalysis to improve initial coulombic efficiency for lithium storage. Journal of Alloys and Compounds, 2020, 816, 152624.	2.8	8
47	Modification of alumina bubbles with ammonium aluminum sulphate. Ceramics International, 2006, 32, 905-909.	2.3	7
48	Effects of Li2CO3 as a secondary lithium source on the LiFePO4/C composites prepared via solid-state method. Journal of Physics and Chemistry of Solids, 2012, 73, 803-807.	1.9	7
49	High purity lithium iron phosphate/carbon composites prepared by using secondary lithium source. Powder Technology, 2013, 237, 160-164.	2.1	7
50	Ultrahigh Reversibility of SnO ₂ in SnO ₂ @C Quantum Dots/Graphene Oxide Nanosheets for Lithium Storage. ChemistrySelect, 2017, 2, 11853-11859.	0.7	7
51	Enlarging Surface/Bulk Ratios of NiO Nanoparticles toward High Utilization and Rate Capability for Supercapacitors. Particle and Particle Systems Characterization, 2020, 37, 1900344.	1.2	7
52	N-doped carbon nanolayer modified nickel foam: A novel substrate for supercapacitors. Applied Surface Science, 2021, 546, 148754.	3.1	7
53	Porous Carbon Nanosheets Armoring 3D Current Collectors toward Ultrahigh Mass Loading for High-Energy-Density All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 52519-52529.	4.0	6
54	Facile One-Step Dynamic Hydrothermal Synthesis of Spinel LiMn2O4/Carbon Nanotubes Composite as Cathode Material for Lithium-Ion Batteries. Materials, 2019, 12, 4123.	1.3	5

LIANBANG WANG

#	Article	IF	CITATIONS
55	Subâ€10Ânm V ₂ O ₅ Crystals on Carbon Nanosheets for Advanced Allâ€Solidâ€State Lithium Metal Batteries. Particle and Particle Systems Characterization, 2020, 37, 2000164.	1.2	4
56	Low-carbon CeOx/Ru@RuO2 nanosheets as bifunctional catalysts for lithium-oxygen batteries. Journal of Alloys and Compounds, 2022, 924, 166354.	2.8	4
57	Uniform Mesoporous CoCO 3 Nanospindles on Graphite Nanosheets for Highly Efficient Lithium Storage. Particle and Particle Systems Characterization, 2020, 37, 2000113.	1.2	3
58	Polymeric bis(lithium disodium nonahydrate) decavanadate, {[LiNa2(H2O)9]2[V10O28]}n. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, i185-i187.	0.2	2
59	Diammonium bis[hexaaquanickel(II)] decavanadate tetrahydrate, (NH4)2[Ni(H2O)6]2V10O28·4H2O. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, i1-i3.	0.2	2
60	Catalytic Hydrolysis of Borohydride for Fuel Cells. Chinese Journal of Chemical Engineering, 2011, 19, 693-697.	1.7	2
61	Carbon-filament-entangled lithium iron phosphate/carbon composite produced in partially reductive atmosphere: Dual role of the iron as source material and catalyst. Ceramics International, 2013, 39, 2175-2181.	2.3	2
62	Engineering Bamboo Leaves Into 3D Macroporous Si@C Composites for Stable Lithium-Ion Battery Anodes. Frontiers in Chemistry, 2022, 10, 882681.	1.8	2
63	EC-Assisted Synthesis and Electrochemical Performance of Ultrathin Carbon-Coated LiMnPO ₄ Nanoplates as Cathodes in Lithium Ion Batteries. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	1
64	Preparation of Chemical Manganese Dioxide by Dilute Sulphuric Acid Pickling of Mn ₃ O ₄ and Its Application to the Synthesis of LiMn ₂ O ₄ . ChemistrySelect, 2017, 2, 7013-7017.	0.7	1
65	The Influence of Residual Acidic and Sulfate Impurities of Electrolytic Manganese Dioxide on the Electrochemistry of LiMn2 O4 Cathode. ChemistrySelect, 2017, 2, 9402-9406.	0.7	0
66	Electrochemical Behavior of Nitrobenzene on Pt Micro-disk Electrode in Aprotic Medium. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2006, 22, 635-637.	2.2	0