

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551754/publications.pdf Version: 2024-02-01

DENC

#	Article	IF	CITATIONS
1	Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers. International Journal of Heat and Mass Transfer, 2017, 113, 217-228.	4.8	78
2	A comparative study of discrete velocity methods for low-speed rarefied gas flows. Computers and Fluids, 2018, 161, 33-46.	2.5	70
3	A Comparative Study of LBE and DUGKS Methods for Nearly Incompressible Flows. Communications in Computational Physics, 2015, 17, 657-681.	1.7	67
4	DUGKS simulations of three-dimensional Taylor–Green vortex flow and turbulent channel flow. Computers and Fluids, 2017, 155, 9-21.	2.5	51
5	Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations?. Journal of Computational Physics, 2020, 407, 109245.	3.8	50
6	Performance evaluation of the general characteristics based off-lattice Boltzmann scheme and DUGKS for low speed continuum flows. Journal of Computational Physics, 2017, 333, 227-246.	3.8	42
7	Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows. Physical Review E, 2016, 94, 043304.	2.1	41
8	A multi-level parallel solver for rarefied gas flows in porous media. Computer Physics Communications, 2019, 234, 14-25.	7.5	37
9	A coupled discrete unified gas-kinetic scheme for Boussinesq flows. Computers and Fluids, 2015, 120, 70-81.	2.5	36
10	Discrete unified gas kinetic scheme with a force term for incompressible fluid flows. Computers and Mathematics With Applications, 2016, 71, 2608-2629.	2.7	36
11	Discrete unified gas kinetic scheme for flows of binary gas mixture based on the McCormack model. Physics of Fluids, 2019, 31, .	4.0	34
12	Accurate and efficient computation of the Boltzmann equation for Couette flow: Influence of intermolecular potentials on Knudsen layer function and viscous slip coefficient. Journal of Computational Physics, 2019, 378, 573-590.	3.8	27
13	Pore-scale simulations of rarefied gas flows in ultra-tight porous media. Fuel, 2019, 249, 341-351.	6.4	24
14	Thermal transpiration in molecular gas. Physics of Fluids, 2020, 32, .	4.0	20
15	Oscillatory rarefied gas flow inside a three dimensional rectangular cavity. Physics of Fluids, 2018, 30, .	4.0	18
16	Implicit Discontinuous Galerkin Method for the Boltzmann Equation. Journal of Scientific Computing, 2020, 82, 1.	2.3	17
17	Heat and mass transfer of oscillatory lid-driven cavity flow in the continuum, transition and free molecular flow regimes. International Journal of Heat and Mass Transfer, 2019, 131, 291-300.	4.8	16
18	Nonlinear oscillatory rarefied gas flow inside a rectangular cavity. Physical Review E, 2018, 97, 043103.	2.1	15

Peng

#	Article	IF	CITATIONS
19	A high-order hybridizable discontinuous Galerkin method with fast convergence to steady-state solutions of the gas kinetic equation. Journal of Computational Physics, 2019, 376, 973-991.	3.8	13
20	Oscillatory Couette flow of rarefied binary gas mixtures. Physics of Fluids, 2021, 33, .	4.0	11
21	The kinetic Shakhov–Enskog model for non-equilibrium flow of dense gases. Journal of Fluid Mechanics, 2020, 883, .	3.4	10
22	Discrete unified gas kinetic scheme for all Knudsen number flows. IV. Strongly inhomogeneous fluids. Physical Review E, 2020, 101, 043303.	2.1	10
23	GPU acceleration of an iterative scheme for gas-kinetic model equations with memory reduction techniques. Computer Physics Communications, 2019, 245, 106861.	7.5	8
24	Pore-scale study of non-ideal gas dynamics under tight confinement considering rarefaction, denseness and molecular interactions. Journal of Natural Gas Science and Engineering, 2021, 90, 103916.	4.4	8
25	Molecular kinetic modelling of nanoscale slip flow using a continuum approach. Journal of Fluid Mechanics, 2022, 939, .	3.4	8
26	Oscillatory square cavity flows of binary gas mixtures. Physics of Fluids, 2021, 33, 067121.	4.0	6
27	A semi-implicit gas-kinetic scheme for smooth flows. Computer Physics Communications, 2016, 205, 22-31.	7.5	5
28	High-order hybridisable discontinuous Galerkin method for the gas kinetic equation. International Journal of Computational Fluid Dynamics, 2019, 33, 335-342.	1.2	2
29	A high order off-lattice kinetic method for high speed flows with a moderate Knudsen number. AIP Conference Proceedings, 2019, , .	0.4	0