
Benjamin Gaubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe. Atmospheric Chemistry and Physics, 2013, 13, 9675-9693.	1.9	97
2	Global atmospheric CO ₂ inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences, 2019, 16, 117-134.	1.3	77
3	Changes in global air pollutant emissions during the COVID-19 pandemic: a dataset for atmospheric modeling. Earth System Science Data, 2021, 13, 4191-4206.	3.7	57
4	Global Changes in Secondary Atmospheric Pollutants During the 2020 COVIDâ€19 Pandemic. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034213.	1.2	54
5	Balance of Emission and Dynamical Controls on Ozone During the Koreaâ€United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 387-413.	1.2	51
6	Chemical Feedback From Decreasing Carbon Monoxide Emissions. Geophysical Research Letters, 2017, 44, 9985-9995.	1.5	49
7	Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe. Atmospheric Chemistry and Physics, 2012, 12, 2513-2532.	1.9	47
8	Regional scale ozone data assimilation using an ensemble Kalman filter and the CHIMERE chemical transport model. Geoscientific Model Development, 2014, 7, 283-302.	1.3	47
9	Diverse response of surface ozone to COVID-19 lockdown in China. Science of the Total Environment, 2021, 789, 147739.	3.9	44
10	Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ. Elementa, 2020, 8, .	1.1	44
11	Multi-model intercomparisons of air quality simulations for the KORUS-AQ campaign. Elementa, 2021, 9, .	1.1	41
12	Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sensing of Environment, 2021, 256, 112275.	4.6	41
13	Toward a chemical reanalysis in a coupled chemistryâ€climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7310-7343.	1.2	37
14	Large uncertainties in trends of energy demand for heating and cooling under climate change. Nature Communications, 2021, 12, 5197.	5.8	37
15	Evaluating high-resolution forecasts of atmospheric CO and CO ₂ from a global prediction system during KORUS-AQ field campaign. Atmospheric Chemistry and Physics, 2018, 18, 11007-11030.	1.9	35
16	Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 14617-14647.	1.9	34
17	Response of surface ozone concentration to emission reduction and meteorology during the COVIDâ€19 lockdown in Europe. Meteorological Applications, 2021, 28, e1990.	0.9	23
18	Ozone Anomalies in the Free Troposphere During the COVIDâ€19 Pandemic. Geophysical Research Letters, 2021, 48, e2021GL094204.	1.5	22

Benjamin Gaubert

#	Article	IF	CITATIONS
19	Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESMâ€CAMâ€chem and DART. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,501.	1.2	21
20	Source Contributions to Carbon Monoxide Concentrations During KORUSâ€AQ Based on CAM hem Model Applications. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2796-2822.	1.2	21
21	The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bulletin of the American Meteorological Society, 2020, 101, E1743-E1760.	1.7	21
22	Sectorâ€Based Topâ€Down Estimates of NO _{<i>x</i>} , SO ₂ , and CO Emissions in East Asia. Geophysical Research Letters, 2022, 49, .	1.5	21
23	New seasonal pattern of pollution emerges from changing North American wildfires. Nature Communications, 2022, 13, 2043.	5.8	18
24	Analysis of the potential of one possible instrumental configuration of the next generation of IASI instruments to monitor lower tropospheric ozone. Atmospheric Measurement Techniques, 2013, 6, 621-635.	1.2	16
25	Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions. Atmospheric Measurement Techniques, 2020, 13, 1337-1356.	1.2	16
26	Satellite data reveal a common combustion emission pathway for major cities in China. Atmospheric Chemistry and Physics, 2019, 19, 4269-4288.	1.9	15
27	Ozone pollution: What can we see from space? A case study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8476-8499.	1.2	14
28	Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling. Atmosphere, 2021, 12, 946.	1.0	13
29	New constraints on biogenic emissions using satellite-based estimates of carbon monoxide fluxes. Atmospheric Chemistry and Physics, 2019, 19, 13569-13579.	1.9	12
30	Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy. Atmospheric Measurement Techniques, 2011, 4, 2323-2331.	1.2	9
31	On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of northern hemisphere geostationary satellites: Global scale assimilation experiments (Part II). Atmospheric Environment, 2016, 140, 188-201.	1.9	7
32	Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements. Atmospheric Measurement Techniques, 2021, 14, 4639-4655.	1.2	6
33	Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC 4 RS Case Study. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031957.	1.2	5
34	Monitoring the lowermost tropospheric ozone with thermal infrared observations from a geostationary platform: performance analyses for a future dedicated instrument. Atmospheric Measurement Techniques, 2014, 7, 391-407.	1.2	3
35	Fate of Pollution Emitted During the 2015 Indonesian Fire Season. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033474.	1.2	3