Yiqun Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551703/publications.pdf Version: 2024-02-01

ΥΙΟΗΝ ΖΗΟΗ

#	Article	IF	CITATIONS
1	Crossing the blood-brain barrier with nanoparticles. Journal of Controlled Release, 2018, 270, 290-303.	9.9	512
2	Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 2019, 11, 4634-4652.	5.6	301
3	Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sensors, 2020, 5, 2724-2741.	7.8	266
4	Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale, 2019, 11, 6192-6205.	5.6	184
5	Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Applied Catalysis B: Environmental, 2019, 248, 157-166.	20.2	165
6	Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 419-433.	7.4	151
7	A deep investigation into the structure of carbon dots. Carbon, 2021, 173, 433-447.	10.3	128
8	Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale, 2017, 9, 17533-17543.	5.6	118
9	Polymers in Carbon Dots: A Review. Polymers, 2017, 9, 67.	4.5	112
10	Bone Tissue Engineering via Carbonâ€Based Nanomaterials. Advanced Healthcare Materials, 2020, 9, e1901495.	7.6	111
11	Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale, 2019, 11, 22387-22397.	5.6	83
12	Tryptophan carbon dots and their ability to cross the blood-brain barrier. Colloids and Surfaces B: Biointerfaces, 2019, 176, 488-493.	5.0	71
13	Carbon Dots: Diverse Preparation, Application, and Perspective in Surface Chemistry. Langmuir, 2019, 35, 9115-9132.	3.5	70
14	Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Applied Materials Today, 2020, 20, 100677.	4.3	69
15	Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors. Carbon, 2022, 192, 198-208.	10.3	69
16	Carbon Dots: A Future Blood–Brain Barrier Penetrating Nanomedicine and Drug Nanocarrier. International Journal of Nanomedicine, 2021, Volume 16, 5003-5016.	6.7	64
17	Carbon Nitride Dots: A Selective Bioimaging Nanomaterial. Bioconjugate Chemistry, 2019, 30, 111-123.	3.6	62
18	Photoluminescent Carbon Dots: A Mixture of Heterogeneous Fractions. ChemPhysChem, 2018, 19, 2589-2597.	2.1	49

YIQUN ZHOU

#	Article	IF	CITATIONS
19	Gelâ€like Carbon Dots: Characterization and their Potential Applications. ChemPhysChem, 2017, 18, 890-897.	2.1	48
20	Metformin derived carbon dots: Highly biocompatible fluorescent nanomaterials as mitochondrial targeting and blood-brain barrier penetrating biomarkers. Journal of Colloid and Interface Science, 2021, 592, 485-497.	9.4	47
21	Carbon dots and gold nanoparticles based immunoassay for detection of alpha-L-fucosidase. Analytica Chimica Acta, 2018, 1041, 114-121.	5.4	45
22	Nanoparticle-mediated approaches for Alzheimer's disease pathogenesis, diagnosis, and therapeutics. Journal of Controlled Release, 2019, 314, 125-140.	9.9	43
23	Pediatric glioblastoma target-specific efficient delivery of gemcitabine across the blood–brain barrier <i>via</i> carbon nitride dots. Nanoscale, 2020, 12, 7927-7938.	5.6	43
24	Synthesis Mechanisms, Structural Models, and Photothermal Therapy Applications of Top-Down Carbon Dots from Carbon Powder, Graphite, Graphene, and Carbon Nanotubes. International Journal of Molecular Sciences, 2022, 23, 1456.	4.1	41
25	Facile Synthesis of "Boron-Doped―Carbon Dots and Their Application in Visible-Light-Driven Photocatalytic Degradation of Organic Dyes. Nanomaterials, 2020, 10, 1560.	4.1	40
26	Embedding Carbon Dots in Superabsorbent Polymers for Additive Manufacturing. Polymers, 2018, 10, 921.	4.5	39
27	Direct conjugation of distinct carbon dots as Lego-like building blocks for the assembly of versatile drug nanocarriers. Journal of Colloid and Interface Science, 2020, 576, 412-425.	9.4	35
28	Drug delivery of memantine with carbon dots for Alzheimer's disease: blood–brain barrier penetration and inhibition of tau aggregation. Journal of Colloid and Interface Science, 2022, 617, 20-31.	9.4	35
29	Crossing the blood–brain barrier with carbon dots: uptake mechanism and <i>in vivo</i> cargo delivery. Nanoscale Advances, 2021, 3, 3942-3953.	4.6	34
30	Carbon dot composites for bioapplications: a review. Journal of Materials Chemistry B, 2022, 10, 843-869.	5.8	33
31	Photosynthesis Enhancement in Maize via Nontoxic Orange Carbon Dots. Journal of Agricultural and Food Chemistry, 2021, 69, 5446-5451.	5.2	29
32	Recent advances on utilization of bioprinting for tumor modeling. Bioprinting, 2020, 18, e00079.	5.8	22
33	Thermoelectric performance of Cu2Se doped with rapidly synthesized gel-like carbon dots. Journal of Alloys and Compounds, 2021, 864, 157916.	5.5	22
34	Gel-like carbon dots: A high-performance future photocatalyst. Journal of Colloid and Interface Science, 2021, 599, 519-532.	9.4	22
35	Close-Packed Langmuir Monolayers of Saccharide-Based Carbon Dots at the Air–Subphase Interface. Langmuir, 2019, 35, 6708-6718.	3.5	21
36	3D printed ABS/paraffin hybrid rocket fuels with carbon dots for superior combustion performance. Combustion and Flame, 2021, 225, 428-434.	5.2	21

YIQUN ZHOU

#	ARTICLE	IF	CITATIONS
37	Structure-activity relationship of carbon nitride dots in inhibiting Tau aggregation. Carbon, 2022, 193, 1-16.	10.3	20
38	Rheology of a carbon dot gel. Inorganica Chimica Acta, 2017, 468, 119-124.	2.4	13
39	Insights into the photoluminescence properties of gel-like carbon quantum dots embedded in poly(methyl methacrylate) polymer. Materials Today Communications, 2019, 18, 32-38.	1.9	11
40	Development of Red-Emissive Carbon Dots for Bioimaging through a Building Block Approach: Fundamental and Applied Studies. Bioconjugate Chemistry, 2022, 33, 226-237.	3.6	11
41	In vivo characterization of carbon dots–bone interactions: toward the development of bone-specific nanocarriers for drug delivery. Drug Delivery, 2021, 28, 1281-1289.	5.7	9
42	Crossing Bloodâ€Brain Barrier with Carbon Quantum Dots. FASEB Journal, 2019, 33, 785.8.	0.5	9
43	Quantification of Nucleic Acid Concentration in the Nanoparticle or Polymer Conjugates Using Circular Dichroism Spectroscopy. Analytical Chemistry, 2018, 90, 2255-2262.	6.5	8
44	Facile and Sensitive Detection of Nitrogen-Containing Organic Bases with Near Infrared C-Dots Derived Assays. Nanomaterials, 2021, 11, 2607.	4.1	7
45	DFMO Carbon Dots for Treatment of Neuroblastoma and Bioimaging. ACS Applied Bio Materials, 2022, 5, 3300-3309.	4.6	6
46	Rapid qualitative and quantitative analyses of anthocyanin composition in berries from the Tibetan Plateau with UPLC-quadruple-Orbitrap MS and their antioxidant activities. European Journal of Mass Spectrometry, 2020, 26, 301-308.	1.0	5
47	Enhancement of Thermoelectric Figure of Merit of Bi2Te3 Using Carbon Dots. , 2018, , .		2
48	Determine both the conformation and orientation of a specific residue in α-synuclein(61–95) even in monolayer by 13C isotopic label and p-polarized multiple-angle incidence resolution spectrometry (pMAIRS). Analytical Sciences, 2022, 38, 935-940.	1.6	2
49	THER-35. TARGETED DUAL DRUG DELIVERY USING NON-TOXIC CARBON DOTS AS A NANOCARRIER FOR PEDIATRIC BRAIN TUMORS. Neuro-Oncology, 2019, 21, ii121-ii121.	1.2	Ο