
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551374/publications.pdf Version: 2024-02-01

KALVANASIS SAHIL

#	Article	IF	CITATIONS
1	Femtosecond Solvation Dynamics in a Neat Ionic Liquid and Ionic Liquid Microemulsion:  Excitation Wavelength Dependence. Journal of Physical Chemistry B, 2007, 111, 12809-12816.	1.2	147
2	Excited state proton transfer of pyranine in a γ-cyclodextrin cavity. Chemical Physics Letters, 2005, 412, 228-234.	1.2	103
3	Fluorescence Anisotropy Decay and Solvation Dynamics in a Nanocavity:  Coumarin 153 in Methyl β-Cyclodextrins. Journal of Physical Chemistry A, 2005, 109, 9716-9722.	1.1	89
4	Solvation dynamics of 4-aminophthalimide in dioxane–water mixture. Chemical Physics Letters, 2004, 384, 128-133.	1.2	76
5	A femtosecond study of excitation wavelength dependence of solvation dynamics in a PEO-PPO-PEO triblock copolymer micelle. Journal of Chemical Physics, 2006, 124, 204905.	1.2	76
6	Slow Solvation Dynamics at the Active Site of an Enzyme:  Implications for Catalysis. Biochemistry, 2005, 44, 8940-8947.	1.2	75
7	Excited state proton transfer from pyranine to acetate in a CTAB micelle. Chemical Physics Letters, 2004, 399, 147-151.	1.2	70
8	Temperature dependence of solvation dynamics and anisotropy decay in a protein: ANS in bovine serum albumin. Journal of Chemical Physics, 2006, 124, 124909.	1.2	69
9	Temperature Dependence of Anisotropy Decay and Solvation Dynamics of Coumarin 153 in Î ³ -Cyclodextrin Aggregates. Journal of Physical Chemistry A, 2005, 109, 7359-7364.	1.1	63
10	Fluorescence Quenching of Hydrogen-Bonded Coumarin 102-Phenol Complex: Effect of Excited-State Hydrogen Bonding Strength. Journal of Physical Chemistry A, 2013, 117, 3945-3953.	1.1	63
11	Study of protein–surfactant interaction using excited state proton transfer. Chemical Physics Letters, 2005, 404, 341-345.	1.2	59
12	A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature. Journal of Colloid and Interface Science, 2014, 413, 37-42.	5.0	57
13	Excited-State Proton Transfer from Pyranine to Acetate in Î ³ -Cyclodextrin and Hydroxypropyl Î ³ -Cyclodextrin. Journal of Physical Chemistry A, 2006, 110, 13646-13652.	1.1	50
14	Ultrafast Electron Transfer in a Nanocavity. Dimethylaniline to Coumarin Dyes in Hydroxypropyl γ-Cyclodextrin. Journal of Physical Chemistry A, 2006, 110, 13139-13144.	1.1	46
15	A femtosecond study of photoinduced electron transfer from dimethylaniline to coumarin dyes in a cetyltrimethylammonium bromide micelle. Journal of Chemical Physics, 2006, 125, 054509.	1.2	44
16	Heterogeneity of the Electron-Trapping Kinetics in CdSe Nanoparticles. Nano Letters, 2011, 11, 3493-3498.	4.5	44
17	Ultrafast fluorescence resonance energy transfer in a reverse micelle: Excitation wavelength dependence. Journal of Chemical Physics, 2006, 125, 224710.	1.2	43
18	Femtosecond Study of Partially Folded States of Cytochrome C by Solvation Dynamics. Journal of Physical Chemistry B, 2006, 110, 1056-1062.	1.2	42

#	Article	IF	CITATIONS
19	Ultrafast fluorescence resonance energy transfer in a micelle. Journal of Chemical Physics, 2006, 125, 044714.	1.2	41
20	Ultrafast photoinduced electron transfer from dimethylaniline to coumarin dyes in sodium dodecyl sulfate and triton X-100 micelles. Journal of Chemical Physics, 2007, 126, 204708.	1.2	41
21	Multifunctional N-Doped Carbon Dots for Bimodal Detection of Bilirubin and Vitamin B ₁₂ , Living Cell Imaging, and Fluorescent Ink. ACS Applied Bio Materials, 2021, 4, 5201-5211.	2.3	40
22	A Femtosecond Study of Excitation-Wavelength Dependence of Solvation Dynamics in a Vesicle. Chemistry - an Asian Journal, 2006, 1, 188-194.	1.7	33
23	Ultrafast Dynamics in Biological Systems and in Nano-Confined Environments. Bulletin of the Chemical Society of Japan, 2007, 80, 1033-1043.	2.0	33
24	Solvation Dynamics of a Protein in the Pre Molten Globule State. Journal of Physical Chemistry B, 2006, 110, 21210-21215.	1.2	31
25	Heterogeneous Reaction Rates in an Ionic Liquid: Quantitative Results from Two-Dimensional Multiple Population-Period Transient Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 7984-7993.	1.1	28
26	Helicityâ€Dependent Regiodifferentiation in the Excitedâ€State Quenching and Chiroptical Properties of Inward/Outward Helical Coumarins. Chemistry - A European Journal, 2017, 23, 14797-14805.	1.7	25
27	Excited-state proton transfer from pyranine to acetate in methanol. Journal of Chemical Sciences, 2007, 119, 71-76.	0.7	21
28	Hydration dynamics of 4-aminophthalimide in a substituted β-cyclodextrin nanocavity. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 334-339.	2.0	20
29	N-Doped Carbon Dots for Visual Recognition of 4-Nitroaniline and Use in Fluorescent Inks. ACS Applied Nano Materials, 2021, 4, 9616-9624.	2.4	19
30	How Does Interfacial Hydration Alter during Rod to Sphere Transition in DDAB/Water/Cyclohexane Reverse Micelles? Insights from Excited State Proton Transfer and Fluorescence Anisotropy. Langmuir, 2016, 32, 6656-6665.	1.6	18
31	How do the interfacial properties of zwitterionic sulfobetaine micelles differ from those of cationic alkyl quaternary ammonium micelles? An excited state proton transfer study. Physical Chemistry Chemical Physics, 2017, 19, 31461-31468.	1.3	17
32	Competitive Adsorption at the Air–Water Interface: A Second Harmonic Generation Study. Journal of Physical Chemistry C, 2011, 115, 9701-9705.	1.5	16
33	The strikingly different miscibility of n-octanol in highly-confined and quasi-confined water. Chemical Communications, 2015, 51, 14103-14106.	2.2	16
34	Wet Interface of Benzylhexadecyldimethylammonium Chloride Reverse Micelle Revealed by Excited State Proton Transfer of a Localized Probe. Langmuir, 2015, 31, 12587-12596.	1.6	16
35	Effect of Cosurfactants on the Interfacial Hydration of CTAB Quaternary Reverse Micelle Probed Using Excited State Proton Transfer. Langmuir, 2016, 32, 10659-10667.	1.6	16
36	Study of interaction of a cationic protein with a cationic surfactant using solvation dynamics. Chemical Physics Letters, 2005, 413, 484-489.	1.2	15

#	Article	IF	CITATIONS
37	Reduced fluorescence quenching of coumarin 102 at higher phenol mole fractions in cyclohexane–phenol and anisole–phenol solvent mixtures: role of competitive hydrogen bonding. RSC Advances, 2014, 4, 58299-58306.	1.7	15
38	Study of Solvation Dynamics in an Ormosil:  CTAB in a Solâ^'Gel Matrix. Journal of Physical Chemistry B, 2004, 108, 11971-11975.	1.2	14
39	Effect of Salt on the Adsorption Affinity of an Aromatic Carbonyl Molecule to the Airâ^'Aqueous Interface: Insight for Aqueous Environmental Interfaces. Journal of Physical Chemistry C, 2010, 114, 18258-18262.	1.5	14
40	Rate Dispersion in the Biexciton Decay of CdSe/ZnS Nanoparticles from Multiple Population-Period Transient Spectroscopy. Journal of the American Chemical Society, 2013, 135, 1002-1005.	6.6	14
41	Protein-activated transformation of silver nanoparticles into blue and red-emitting nanoclusters. RSC Advances, 2019, 9, 39405-39409.	1.7	14
42	Hydration dynamics of a protein in the presence of urea and sodium dodecyl sulfate. Chemical Physics Letters, 2004, 395, 58-63.	1.2	13
43	Faster photoinduced electron transfer in a diluted mixture than in a neat donor solvent: effect of excited-state H-bonding. Physical Chemistry Chemical Physics, 2014, 16, 6159.	1.3	13
44	Characterizing optical properties, composition of stabilizer-free copper nanoclusters and its interaction with bovine serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 17-25.	2.0	13
45	New Insights on Hydrogen-Bond-Induced Fluorescence Quenching Mechanism of C102–Phenol Complex via Proton Coupled Electron Transfer. Journal of Physical Chemistry A, 2018, 122, 2394-2400.	1.1	13
46	Coumarin-Annelated Regioisomeric Heptahelicenes: Influence of Helicity on Excited-State Properties and Chiroptical Properties. Journal of Organic Chemistry, 2019, 84, 10658-10668.	1.7	13
47	A Ratio-Analysis Method for the Dynamics of Excited State Proton Transfer: Pyranine in Water and Micelles. Journal of Physical Chemistry B, 2018, 122, 6610-6615.	1.2	12
48	Anomalous Variation of Excited-State Proton Transfer Dynamics inside a Triblock Copolymer–Cationic Surfactant Mixed Micelle. Journal of Physical Chemistry B, 2019, 123, 8559-8568.	1.2	12
49	Hit Multiple Targets with One Arrow: Pb ²⁺ and ClO [–] Detection by Edge Functionalized Graphene Quantum Dots and Their Applications in Living Cells. ACS Applied Bio Materials, 2021, 4, 7605-7614.	2.3	12
50	Red-Emitting Silver Nanoclusters for Dual-Mode Detection of Cu ²⁺ and Vitamin B ₁₂ in Living Cells. ACS Applied Nano Materials, 2022, 5, 7670-7678.	2.4	12
51	Slow solvation dynamics of 4-AP and DCM in binary mixtures. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 180-184.	2.0	11
52	Coupling of Molecular Transition with the Surface Plasmon Resonance of Silver Nanoparticles inside the Restricted Environment of Reverse Micelles. ACS Omega, 2017, 2, 5494-5503.	1.6	11
53	Selective Probing of Reverse Micelle Interfacial Layer upon Silver Nanoparticle Formation using Dynamic Stokes Shift Measurements. Journal of Physical Chemistry C, 2014, 118, 10366-10374.	1.5	9
54	Sensing of iron(III)-biomolecules by surfactant-free fluorescent copper nanoclusters. Sensing and Bio-Sensing Research, 2019, 22, 100250.	2.2	9

#	Article	IF	CITATIONS
55	Thermal gratings and phase in high-order, transient-grating spectroscopy. Journal of Chemical Physics, 2011, 134, 144502.	1.2	8
56	Anomalous modulation of photoinduced electron transfer of coumarin 102 in aniline–dimethylaniline mixture: dominant role of hydrogen bonding. Physical Chemistry Chemical Physics, 2014, 16, 27096-27103.	1.3	8
57	Pre-micellar interaction or direct monomer to micelle transition for zwitterionic sulfobetaine surfactant in water? A comparative fluorescence study with cationic surfactant. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 140-148.	2.0	8
58	A New Phase Transfer Strategy to Convert Protein apped Nanomaterials into Uniform Fluorescent Nanoclusters in Reverse Micellar Phase. ChemPhysChem, 2018, 19, 2153-2158.	1.0	8
59	Anomalous Spectral Modulation of 4-Aminophthalimide inside Acetonitrile/AOT/n-Heptane Microemulsion: New Insights on Reverse Micelle to Bicontinuous Microemulsion Transition. Journal of Physical Chemistry B, 2018, 122, 6966-6974.	1.2	8
60	Modulation of ultrafast photoinduced electron transfer in H-bonding environment: PET from aniline to coumarin 153 in the presence of an inert co-solvent cyclohexane. Physical Chemistry Chemical Physics, 2015, 17, 32556-32563.	1.3	7
61	Photo-induced Electron Transfer or Proton-Coupled Electron Transfer in Methylbipyridine/Phenol Complexes: A Time-Dependent Density Functional Theory Investigation. Journal of Physical Chemistry A, 2019, 123, 8122-8129.	1.1	7
62	Multiple Population-Period Transient Spectroscopy (MUPPETS) of CdSe/ZnS Nanoparticles. I. Exciton and Biexciton Dynamics. Journal of Physical Chemistry B, 2013, 117, 15257-15271.	1.2	6
63	Analysis of excited state proton transfer dynamics of HPTS in methanol-water mixtures from time-resolved area-normalised emission spectrum (TRANES). Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 138-144.	2.0	5
64	Spectroscopic Studies of Asparaginyl-tRNA Synthetase from Entamoeba histolytica. Protein and Peptide Letters, 2019, 26, 435-448.	0.4	5
65	Probing the interfacial transition of acetonitrile/AOT/n-heptane microemulsion through in situ silver colloid synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 171-177.	2.3	4
66	Comparison of interaction patterns of a triblock copolymer micelle with zwitterionic vs. cationic surfactant: An excited-state proton transfer dynamics investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128327.	2.3	4
67	Study of partially folded states of cytochrome C by solvation dynamics. Journal of Molecular Liquids, 2006, 124, 128-135.	2.3	3
68	Multiple Population-Period Transient Spectroscopy (MUPPETS) of CdSe/ZnS Nanoparticles. II. Effects of High Fluence and Solvent Heating. Journal of Physical Chemistry B, 2013, 117, 15272-15284.	1.2	3
69	Elucidating the H-Bonding Environment of Coumarin 102 in a Phenol–Cyclohexane Mixture by Molecular Dynamics Simulation: Implications for H-Bond-Guided Photoinduced Electron Transfer. Journal of Physical Chemistry A, 2017, 121, 616-622.	1.1	3
70	Photophysical characterization of a sub-micellar triblock copolymer-cationic surfactant aggregate for nanostructure synthesis. Journal of Photochemistry and Photobiology, 2021, 8, 100066.	1.1	3
71	Study of Biological Assemblies by Ultrafast Fluorescence Spectroscopy. Reviews in Fluorescence, 2009, , 157-177.	0.5	3
72	Effect of Photoacid Strength on Fluorescence Modulation of 2-Naphthol Derivatives inside β-Cyclodextrin Cavity: Insights from Fluorescence, Isothermal Calorimetry, and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2019, 123, 9291-9301.	1.2	2

#	Article	IF	CITATIONS
73	Contrasting pKa shift and fluorescence modulation of 6-cyano-2-naphthol within α- and β-cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 412, 113254.	2.0	0