
David G Birch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551365/publications.pdf Version: 2024-02-01

DAVID C RIDCH

#	Article	IF	CITATIONS
1	Insights into the Function of Rim Protein in Photoreceptors and Etiology of Stargardt's Disease from the Phenotype in abcr Knockout Mice. Cell, 1999, 98, 13-23.	13.5	859
2	Effect of Dietary Omega-3 Fatty Acids on Retinal Function of Very-Low-Birth-Weight Neonates. Pediatric Research, 1990, 28, 485-492.	1.1	554
3	A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Developmental Medicine and Child Neurology, 2000, 42, 174-181.	1.1	533
4	Visual Acuity and the Essentiality of Docosahexaenoic Acid and Arachidonic Acid in the Diet of Term Infants. Pediatric Research, 1998, 44, 201-209.	1.1	432
5	Essential fatty acids in visual and brain development. Lipids, 2001, 36, 885-895.	0.7	414
6	Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nature Genetics, 2000, 26, 319-323.	9.4	309
7	Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Human Mutation, 2001, 17, 42-51.	1.1	292
8	Natural Course of Retinitis Pigmentosa Over a Three-Year Interval. American Journal of Ophthalmology, 1985, 99, 240-251.	1.7	290
9	Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology, 2016, 123, 2248-2254.	2.5	281
10	Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6241-6245.	3.3	260
11	Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nature Genetics, 2000, 24, 79-83.	9.4	257
12	A Range of Clinical Phenotypes Associated with Mutations in CRX, a Photoreceptor Transcription-Factor Gene. American Journal of Human Genetics, 1998, 63, 1307-1315.	2.6	256
13	Prevalence of Disease-Causing Mutations in Families with Autosomal Dominant Retinitis Pigmentosa: A Screen of Known Genes in 200 Families. , 2006, 47, 3052.		251
14	Standardized Full-Field Electroretinography. JAMA Ophthalmology, 1992, 110, 1571.	2.6	241
15	A Comprehensive Mutation Analysis of RP2 and RPGR in a North American Cohort of Families with X-Linked Retinitis Pigmentosa. American Journal of Human Genetics, 2002, 70, 1545-1554.	2.6	224
16	Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind. Ophthalmology, 2015, 122, 1547-1554.	2.5	224
17	Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Human Genetics, 2014, 133, 331-345.	1.8	204
18	Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Human Molecular Genetics, 2002, 11, 559-568.	1.4	198

#	Article	IF	CITATIONS
19	Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Human Genetics, 2016, 135, 327-343.	1.8	195
20	Thickness of Receptor and Post-receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography. , 2009, 50, 2328.		194
21	Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. Journal of Clinical Investigation, 2008, 118, 2908-16.	3.9	194
22	The Very Large G-Protein-Coupled Receptor VLGR1: A Component of the Ankle Link Complex Required for the Normal Development of Auditory Hair Bundles. Journal of Neuroscience, 2006, 26, 6543-6553.	1.7	190
23	A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Visual Neuroscience, 1990, 5, 379-387.	0.5	179
24	Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: A model for macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4164-4169.	3.3	173
25	Safety and efficacy of omega-3 fatty acids in the nutrition of very low birth weight infants: Soy oil and marine oil supplementation of formula. Journal of Pediatrics, 1994, 124, 612-620.	0.9	172
26	A computational model of the amplitude and implicit time of the b-wave of the human ERG. Visual Neuroscience, 1992, 8, 107-126.	0.5	168
27	Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Translational Vision Science and Technology, 2018, 7, 6.	1.1	168
28	Randomized Trial of Ciliary Neurotrophic Factor Delivered by Encapsulated Cell Intraocular Implants for Retinitis Pigmentosa. American Journal of Ophthalmology, 2013, 156, 283-292.e1.	1.7	161
29	Role of essential fatty acids in the function of the developing nervous system. Lipids, 1996, 31, S167-S176.	0.7	159
30	Spectral-Domain Optical Coherence Tomography Measures of Outer Segment Layer Progression in Patients With X-Linked Retinitis Pigmentosa. JAMA Ophthalmology, 2013, 131, 1143.	1.4	159
31	A randomized controlled trial of long-chain polyunsaturated fatty acid supplementation of formula in term infants after weaning at 6 wk of age. American Journal of Clinical Nutrition, 2002, 75, 570-580.	2.2	158
32	Normative Reference Ranges for the Retinal Nerve Fiber Layer, Macula, and Retinal Layer Thicknesses in Children. American Journal of Ophthalmology, 2013, 155, 354-360.e1.	1.7	156
33	Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy11The authors have no financial interest in any aspect of this study Ophthalmology, 1999, 106, 258-268.	2.5	150
34	Visual maturation of term infants fed long-chain polyunsaturated fatty acid–supplemented or control formula for 12 mo. American Journal of Clinical Nutrition, 2005, 81, 871-879.	2.2	149
35	Spatial contrast sensitivity in albino and pigmented rats. Vision Research, 1979, 19, 933-937.	0.7	147
36	Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nature Genetics, 2000, 25, 67-73.	9.4	146

#	Article	IF	CITATIONS
37	Visual function in breast-fed term infants weaned to formula with or without long-chain polyunsaturates at 4 to 6 months: A randomized clinical trial. Journal of Pediatrics, 2003, 142, 669-677.	0.9	145
38	Prevalence of AIPL1 Mutations in Inherited Retinal Degenerative Disease. Molecular Genetics and Metabolism, 2000, 70, 142-150.	0.5	144
39	Spectrum and Frequency of Mutations in IMPDH1 Associated with Autosomal Dominant Retinitis Pigmentosa and Leber Congenital Amaurosis. , 2006, 47, 34.		141
40	Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. Journal of Medical Genetics, 2013, 50, 674-688.	1.5	139
41	The Transition Zone between Healthy and Diseased Retina in Patients with Retinitis Pigmentosa. , 2011, 52, 101.		138
42	Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1754-1759.	3.3	136
43	Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity. Vision Research, 1993, 33, 1605-1618.	0.7	134
44	GPR179 Is Required for Depolarizing Bipolar Cell Function and Is Mutated in Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2012, 90, 331-339.	2.6	131
45	b wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13, 623.	0.8	127
46	The Natural History of the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Studies. Ophthalmology, 2016, 123, 817-828.	2.5	126
47	Human cone receptor activity: The leading edge of the <i>a</i> –wave and models of receptor activity. Visual Neuroscience, 1993, 10, 857-871.	0.5	125
48	A Comparison of Visual Field Sensitivity to Photoreceptor Thickness in Retinitis Pigmentosa. , 2010, 51, 4213.		121
49	Impact of Early Dietary Intake and Blood Lipid Composition of Long-Chain Polyunsaturated Fatty Acids on Later Visual Development. Journal of Pediatric Gastroenterology and Nutrition, 2000, 31, 540-553.	0.9	116
50	A leucine to arginine amino acid substitution at codon 46 of rhodopsin is responsible for a severe form of autosomal dominant retinitis pigmentosa. Human Mutation, 1993, 2, 205-213.	1.1	114
51	Mutations in the X-Linked Retinitis Pigmentosa Genes <i>RPGR</i> and <i>RP2</i> Found in 8.5% of Families with a Provisional Diagnosis of Autosomal Dominant Retinitis Pigmentosa. , 2013, 54, 1411.		113
52	Mutations in <i>RPGR</i> and <i>RP2</i> Account for 15% of Males with Simplex Retinal Degenerative Disease. , 2012, 53, 8232.		108
53	The Phenotype of Leber Congenital Amaurosis in Patients With AIPL1 Mutations. JAMA Ophthalmology, 2004, 122, 1029.	2.6	105
54	The Inner Segment/Outer Segment Border Seen on Optical Coherence Tomography Is Less Intense in Patients with Diminished Cone Function. , 2011, 52, 9703.		103

#	Article	IF	CITATIONS
55	Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: Applications and methods. Documenta Ophthalmologica, 1996, 92, 253-267.	1.0	102
56	Phototransduction in human cones measured using the a-wave of the ERG. Vision Research, 1995, 35, 2801-2810.	0.7	97
57	Spectrum of Mutations in the RPGR Gene That Are Identified in 20% of Families with X-Linked Retinitis Pigmentosa. American Journal of Human Genetics, 1997, 61, 1287-1292.	2.6	93
58	Photoresponses of human rods <i>in vivo</i> derived from paired-flash electroretinograms. Visual Neuroscience, 1997, 14, 73-82.	0.5	92
59	SAFETY AND EFFECT ON ROD FUNCTION OF ACU-4429, A NOVEL SMALL-MOLECULE VISUAL CYCLE MODULATOR. Retina, 2012, 32, 183-188.	1.0	92
60	Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing. PLoS ONE, 2016, 11, e0145951.	1.1	91
61	The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Developmental Biology, 2005, 287, 48-60.	0.9	90
62	Mutations in a BTB-Kelch Protein, KLHL7, Cause Autosomal-Dominant Retinitis Pigmentosa. American Journal of Human Genetics, 2009, 84, 792-800.	2.6	89
63	Long-term Follow-up of Patients With Retinitis Pigmentosa Receiving Intraocular Ciliary Neurotrophic Factor Implants. American Journal of Ophthalmology, 2016, 170, 10-14.	1.7	89
64	A Comparison of Progressive Loss of the Ellipsoid Zone (EZ) Band in Autosomal Dominant and X-Linked Retinitis Pigmentosa. , 2014, 55, 7417.		85
65	Allelic Heterogeneity and Genetic Modifier Loci Contribute to Clinical Variation in Males with X-Linked Retinitis Pigmentosa Due to RPGR Mutations. PLoS ONE, 2011, 6, e23021.	1.1	83
66	Method for deriving visual field boundaries from OCT scans of patients with retinitis pigmentosa. Biomedical Optics Express, 2011, 2, 1106.	1.5	82
67	Identification of Disease-Causing Mutations in Autosomal Dominant Retinitis Pigmentosa (adRP) Using Next-Generation DNA Sequencing. , 2011, 52, 494.		80
68	Quantitative Electroretinogram Measures of Phototransduction in Cone and Rod Photoreceptors. JAMA Ophthalmology, 2002, 120, 1045.	2.6	79
69	Rod Sensitivity, Cone Sensitivity, and Photoreceptor Layer Thickness in Retinal Degenerative Diseases. , 2011, 52, 7141.		79
70	Retinal pathology and skin barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very long chain fatty acids-4. Molecular Vision, 2007, 13, 258-72.	1.1	79
71	Progression of Stargardt Disease as Determined by Fundus Autofluorescence in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 9). JAMA Ophthalmology, 2017, 135, 1232.	1.4	77
72	Genomic Rearrangements of thePRPF31Gene Account for 2.5% of Autosomal Dominant Retinitis		76

Pigmentosa. , 2006, 47, 4579.

#	Article	IF	CITATIONS
73	Mutations in the RP1 gene causing autosomal dominant retinitis pigmentosa. Human Molecular Genetics, 1999, 8, 2121-2128.	1.4	75
74	Deficiency of rds/peripherin causes photoreceptor death in mouse models of digenic and dominant retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7718-7723.	3.3	70
75	A randomized, placebo-controlled clinical trial of docosahexaenoic acid supplementation for X-linked retinitis pigmentosa. American Journal of Ophthalmology, 2004, 137, 704-718.	1.7	70
76	Mutation Analysis Identifies <i>GUCY2D</i> as the Major Gene Responsible for Autosomal Dominant Progressive Cone Degeneration. , 2008, 49, 5015.		66
77	A Novel Locus (RP24) for X-linked Retinitis Pigmentosa Maps to Xq26-27. American Journal of Human Genetics, 1998, 63, 1439-1447.	2.6	65
78	Transition Zones between Healthy and Diseased Retina in Choroideremia (CHM) and Stargardt Disease (STGD) as Compared to Retinitis Pigmentosa (RP). , 2011, 52, 9581.		65
79	Quantification of Ellipsoid Zone Changes in Retinitis Pigmentosa Using en Face Spectral Domain–Optical Coherence Tomography. JAMA Ophthalmology, 2016, 134, 628.	1.4	64
80	Rates of Decline in Regions of the Visual FieldÂDefined by Frequency-Domain Optical Coherence Tomography in Patients with RPGR-MediatedÂX-Linked Retinitis Pigmentosa. Ophthalmology, 2015, 122, 833-839.	2.5	63
81	Age-related macular degeneration: a target for nanotechnology derived medicines. International Journal of Nanomedicine, 2007, 2, 65-77.	3.3	61
82	Visual Function in Patients with Cone–Rod Dystrophy (CRD) Associated with Mutations in theABCA4 (ABCR) Gene. Experimental Eye Research, 2001, 73, 877-886.	1.2	60
83	Macular Sensitivity Measured With Microperimetry in Stargardt Disease in the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Study. JAMA Ophthalmology, 2017, 135, 696.	1.4	60
84	Visual Acuity Loss and Associated Risk Factors in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 2). Ophthalmology, 2016, 123, 1887-1897.	2.5	59
85	Relationships among Multifocal Electroretinogram Amplitude, Visual Field Sensitivity, and SD-OCT Receptor Layer Thicknesses in Patients with Retinitis Pigmentosa. , 2012, 53, 833.		57
86	Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 12-Month Period. JAMA Ophthalmology, 2019, 137, 1134.	1.4	57
87	Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science and Technology, 2020, 9, 2.	1.1	56
88	Safety and Proof-of-Concept Study of Oral QLT091001 in Retinitis Pigmentosa Due to Inherited Deficiencies of Retinal Pigment Epithelial 65 Protein (RPE65) or Lecithin:Retinol Acyltransferase (LRAT). PLoS ONE, 2015, 10, e0143846.	1.1	55
89	Abnormalities of the retinal cone system in retinitis pigmentosa. Vision Research, 1996, 36, 1699-1709.	0.7	53
90	Evidence for Genetic Heterogeneity in X-Linked Congenital Stationary Night Blindness. American Journal of Human Genetics, 1998, 62, 865-875.	2.6	53

#	Article	IF	CITATIONS
91	PHASE II, RANDOMIZED, PLACEBO-CONTROLLED, 90-DAY STUDY OF EMIXUSTAT HYDROCHLORIDE IN GEOGRAPHIC ATROPHY ASSOCIATED WITH DRY AGE-RELATED MACULAR DEGENERATION. Retina, 2015, 35, 1173-1183.	1.0	53
92	Impaired synthesis of DHA in patients with X-linked retinitis pigmentosa. Journal of Lipid Research, 2001, 42, 1395-1401.	2.0	52
93	Four-Year Placebo-Controlled Trial of Docosahexaenoic Acid in X-Linked Retinitis Pigmentosa (DHAX) Tj ETQq1 1	0.784314 1.4	rgBT /Over
94	Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease. Ophthalmology, 2003, 110, 1159-1163.	2.5	50
95	Loss of Caveolin-1 Impairs Retinal Function Due to Disturbance of Subretinal Microenvironment. Journal of Biological Chemistry, 2012, 287, 16424-16434.	1.6	50
96	Biological Safety Assessment of Docosahexaenoic Acid Supplementation in a Randomized Clinical Trial for X-Linked Retinitis Pigmentosa. JAMA Ophthalmology, 2003, 121, 1269.	2.6	49
97	Focal cone electroretinograms: Aging and macular disease. Documenta Ophthalmologica, 1988, 69, 211-220.	1.0	48
98	Incidence of Atrophic Lesions in Stargardt Disease in the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Study. JAMA Ophthalmology, 2017, 135, 687.	1.4	47
99	Recovery kinetics of human rod phototransduction inferred from the two-branched a-wave saturation function. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13, 586.	0.8	46
100	Docosahexaenoic Acid Slows Visual Field Progression in X-Linked Retinitis Pigmentosa: Ancillary Outcomes of the DHAX Trial. , 2015, 56, 6646.		46
101	Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. British Journal of Ophthalmology, 2019, 103, 390-397.	2.1	45
102	A Dominant Mutation in Hexokinase 1 (<i>HK1</i>) Causes Retinitis Pigmentosa. , 2014, 55, 7147.		43
103	The Gly56Arg mutation in NR2E3 accounts for 1-2% of autosomal dominant retinitis pigmentosa. Molecular Vision, 2007, 13, 1970-5.	1.1	43
104	The Focal Electroretinogram in the Clinical Assessment of Macular Disease. Ophthalmology, 1989, 96, 109-114.	2.5	42
105	Retinal Degeneration in Retinitis Pigmentosa and Neuronal Ceroid Lipofuscinosis: An Overview. Molecular Genetics and Metabolism, 1999, 66, 356-366.	0.5	42
106	MACULAR ATROPHY IN BIRDSHOT RETINOCHOROIDOPATHY. Retina, 2010, 30, 930-937.	1.0	41
107	A Comparison of Methods for Tracking Progression in X-Linked Retinitis Pigmentosa Using Frequency Domain OCT. Translational Vision Science and Technology, 2013, 2, 5.	1.1	40
108	Dependence of cone b-wave implicit time on rod amplitude in retinitis pigmentosa. Vision Research, 1987, 27, 1105-1112.	0.7	39

#	Article	IF	CITATIONS
109	Worldwide Argus II implantation: recommendations to optimize patient outcomes. BMC Ophthalmology, 2016, 16, 52.	0.6	39
110	A novel GCAP1(N104K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vision Research, 2008, 48, 2425-2432.	0.7	38
111	Abnormal Cone Structure in Foveal Schisis Cavities in X-Linked Retinoschisis from Mutations in Exon 6 of the <i>RS1</i> Gene. , 2011, 52, 9614.		38
112	Fatty acid profile of buccal cheek cell phospholipids as an index for dietary intake of docosahexaenoic acid in preterm infants. Lipids, 1999, 34, 337-342.	0.7	37
113	Cone Deactivation Kinetics and GRK1/GRK7 Expression in Enhanced S Cone Syndrome Caused by Mutations inNR2E3. , 2003, 44, 1268.		37
114	OUTCOME MEASURES AND THEIR APPLICATION IN CLINICAL TRIALS FOR RETINAL DEGENERATIVE DISEASES. Retina, 2005, 25, 772-777.	1.0	37
115	Fixation Location and Stability Using the MP-1 Microperimeter in Stargardt Disease. Ophthalmology Retina, 2017, 1, 68-76.	1.2	37
116	Effect of Oral Valproic Acid vs Placebo for Vision Loss in Patients With Autosomal Dominant Retinitis Pigmentosa. JAMA Ophthalmology, 2018, 136, 849.	1.4	36
117	Functional Characterization of Mouse RDH11 as a Retinol Dehydrogenase Involved in Dark Adaptation in Vivo. Journal of Biological Chemistry, 2005, 280, 20413-20420.	1.6	35
118	Targeted High-Throughput DNA Sequencing for Gene Discovery in Retinitis Pigmentosa. Advances in Experimental Medicine and Biology, 2010, 664, 325-331.	0.8	35
119	Dark-Adapted Chromatic Perimetry for Measuring Rod Visual Fields in Patients with Retinitis Pigmentosa. Translational Vision Science and Technology, 2017, 6, 15.	1.1	34
120	Visual acuity and spatial contrast sensitivity in tree squirrels. Behavioural Processes, 1982, 7, 367-375.	0.5	33
121	Behavioral measurements of rat spectral sensitivity. Vision Research, 1975, 15, 687-691.	0.7	32
122	Retinal Disease in Mice Lacking Hypoxia-Inducible Transcription Factor-2α. , 2005, 46, 1010.		32
123	Mutations in the TOPORS gene cause 1% of autosomal dominant retinitis pigmentosa. Molecular Vision, 2008, 14, 922-7.	1.1	32
124	Reliability of a Manual Procedure for Marking the EZ Endpoint Location in Patients with Retinitis Pigmentosa. Translational Vision Science and Technology, 2016, 5, 6.	1.1	31
125	A Novel Dominant Mutation in <i>SAG</i> , the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States. , 2017, 58, 2774.		31
126	X-Chromosome Inactivation Is a Biomarker of Clinical Severity in Female Carriers of RPGR-Associated X-Linked Retinitis Pigmentosa. Ophthalmology Retina, 2020, 4, 510-520.	1.2	31

#	Article	IF	CITATIONS
127	The RUSH2A Study: Best-Corrected Visual Acuity, Full-Field Electroretinography Amplitudes, and Full-Field Stimulus Thresholds at Baseline. Translational Vision Science and Technology, 2020, 9, 9.	1.1	31
128	Red Blood Cell Fatty Acid Levels in Patients with Autosomal Dominant Retinitis Pigmentosa. Experimental Eye Research, 1993, 57, 359-368.	1.2	29
129	Phenotypic Characterization of 3 Families With Autosomal Dominant Retinitis Pigmentosa Due to Mutations in <emph type="ital">KLHL7</emph> . JAMA Ophthalmology, 2011, 129, 1475.	2.6	29
130	Diagnosis of a mild peroxisomal phenotype with next-generation sequencing. Molecular Genetics and Metabolism Reports, 2016, 9, 75-78.	0.4	29
131	Identification of Deep-Intronic Splice Mutations in a Large Cohort of Patients With Inherited Retinal Diseases. Frontiers in Genetics, 2021, 12, 647400.	1.1	29
132	Effects of constant illumination on vision in the albino rat. Physiology and Behavior, 1977, 19, 255-259.	1.0	28
133	A double-blind placebo-controlled evaluation of the acute effects of sildenafil citrate (Viagra) on visual function in subjects with early-stage age-related macular degeneration. American Journal of Ophthalmology, 2002, 133, 665-672.	1.7	28
134	North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the gene. Molecular Vision, 2016, 22, 1239-1247.	1.1	28
135	Effect of stimulus size on static visual fields in patients with retinitis pigmentosa11The authors have no proprietary interest in the products or devices mentioned herein Ophthalmology, 2000, 107, 1950-1954.	2.5	27
136	Cone and Rod ERG Phototransduction Parameters in Retinitis Pigmentosa. , 2003, 44, 3993.		27
137	Transcription factor PRDM8 is required for rod bipolar and type 2 OFF-cone bipolar cell survival and amacrine subtype identity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3010-9.	3.3	27
138	Leveraging spliceâ€affecting variant predictors and a minigene validation system to identify Mendelian diseaseâ€causing variants among exonâ€captured variants of uncertain significance. Human Mutation, 2017, 38, 1521-1533.	1.1	27
139	A Workshop on Measuring the Progression of Atrophy Secondary to Stargardt Disease in the ProgStar Studies: Findings and Lessons Learned. Translational Vision Science and Technology, 2019, 8, 16.	1.1	27
140	Metabolism of omega-3 fatty acids in patients with autosomal dominant retinitis pigmentosa. Experimental Eye Research, 1995, 60, 279-289.	1.2	26
141	Scotopic Microperimetric Assessment of Rod Function in Stargardt Disease (SMART) Study: Design and Baseline Characteristics (Report No. 1). Ophthalmic Research, 2019, 61, 36-43.	1.0	26
142	Characterization of RP1L1, a highly polymorphic paralog of the retinitis pigmentosa 1 (RP1) gene. Molecular Vision, 2003, 9, 129-37.	1.1	26
143	Light-induced damage to photopic and scotopic mechanisms in the rat depends on rearing conditions. Experimental Neurology, 1980, 68, 269-283.	2.0	25
144	Submicrovolt full-field cone electroretinograms: artifacts and reproducibility. Documenta Ophthalmologica, 1996, 92, 269-280.	1.0	25

#	Article	IF	CITATIONS
145	Characterizing the Phenotype and Genotype of a Family With Occult Macular Dystrophy. JAMA Ophthalmology, 2012, 130, 1554.	2.6	25
146	Time Course of Disease Progression of PRPF31-mediated Retinitis Pigmentosa. American Journal of Ophthalmology, 2019, 200, 76-84.	1.7	25
147	ApoER2 Function in the Establishment and Maintenance of Retinal Synaptic Connectivity. Journal of Neuroscience, 2011, 31, 14413-14423.	1.7	24
148	Safety Assessment of Docosahexaenoic Acid in X-Linked Retinitis Pigmentosa: The 4-Year DHAX Trial. , 2014, 55, 4958.		24
149	Structure/Psychophysical Relationships in X-Linked Retinoschisis. , 2016, 57, 332.		24
150	Longitudinal Changes of Fixation Location and Stability Within 12 Months in Stargardt Disease: ProgStar Report No. 12. American Journal of Ophthalmology, 2018, 193, 54-61.	1.7	24
151	Mutations in Known Genes Account for 58% of Autosomal Dominant Retinitis Pigmentosa (adRP). Advances in Experimental Medicine and Biology, 2008, 613, 203-209.	0.8	24
152	CHOROIDEREMIA. Retina, 2019, 39, 2059-2069.	1.0	23
153	Pupillometric measures of retinal sensitivity in infants and adults with retinitis pigmentosa. Vision Research, 1987, 27, 499-505.	0.7	22
154	Regional Variations and Intra-/Intersession Repeatability for Scotopic Sensitivity in Normal Controls and Patients With Inherited Retinal Degenerations. , 2019, 60, 1122.		22
155	Baseline Visual Field Findings in the RUSH2A Study: Associated Factors and Correlation With Other Measures of Disease Severity. American Journal of Ophthalmology, 2020, 219, 87-100.	1.7	22
156	Increment-threshold functions for different rodent species. Vision Research, 1975, 15, 375-378.	0.7	21
157	Visual phenotype in patients with Arg41Gln and Ala196+1bp mutations in the CRX gene. Ophthalmic Genetics, 2000, 21, 89-99.	0.5	21
158	Retinal Anatomy and Electrode Array Position in Retinitis Pigmentosa Patients After Argus II Implantation: An International Study. American Journal of Ophthalmology, 2018, 193, 87-99.	1.7	21
159	Randomised study evaluating the pharmacodynamics of emixustat hydrochloride in subjects with macular atrophy secondary to Stargardt disease. British Journal of Ophthalmology, 2022, 106, 403-408.	2.1	21
160	Heterogeneity in retinal disease and the computational model of the human-rod response. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 1624.	0.8	20
161	Faster Sensitivity Loss around Dense Scotomas than for Overall Macular Sensitivity in Stargardt Disease: ProgStar Report No. 14. American Journal of Ophthalmology, 2020, 216, 219-225.	1.7	20
162	Mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) cause 1.6% of autosomal dominant retinitis pigmentosa. Molecular Vision, 2013, 19, 2407-17.	1.1	20

#	Article	IF	CITATIONS
163	Phenotypic Characterization of a Large Family With RP10 Autosomal-Dominant Retinitis Pigmentosa: An Asp226Asn Mutation in the IMPDH1 Gene. American Journal of Ophthalmology, 2005, 140, 858-867.e1.	1.7	19
164	Longitudinal Microperimetric Changes of Macular Sensitivity in Stargardt Disease After 12 Months. JAMA Ophthalmology, 2020, 138, 772.	1.4	19
165	The Progression of the Stargardt Disease Type 4 (ProgStar-4) Study: Design and Baseline Characteristics (ProgStar-4 Report No. 1). Ophthalmic Research, 2018, 60, 185-194.	1.0	18
166	Prospective Evaluation of Patients With X-Linked Retinoschisis During 18 Months. , 2018, 59, 5941-5956.		18
167	Dark Adaptation of Rod Photoreceptors in Normal Subjects, and in Patients with Stargardt Disease and anABCA4Mutation. , 2004, 45, 2447.		17
168	Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in <i>PRPH2</i> and Protein Haplotypes in <i>trans</i> as Modifiers. , 2016, 57, 349.		17
169	Next-generation sequencing to solve complex inherited retinal dystrophy: A case series of multiple genes contributing to disease in extended families. Molecular Vision, 2017, 23, 470-481.	1.1	17
170	Polymorphic Variation of RPGRIP1L and IQCB1 as Modifiers of X-Linked Retinitis Pigmentosa Caused by Mutations in RPGR. Advances in Experimental Medicine and Biology, 2012, 723, 313-320.	0.8	16
171	Metrics and Acquisition Modes for Fixation Stability as a Visual Function Biomarker. , 2017, 58, BIO268.		16
172	EVALUATION OF FULL-FIELD ELECTRORETINOGRAM REDUCTIONS AFTER OCRIPLASMIN TREATMENT. Retina, 2018, 38, 364-378.	1.0	16
173	Psychophysical studies of cone optical bandwidth in patients with retinitis pigmentosa. Vision Research, 1982, 22, 1113-1117.	0.7	15
174	PERSISTENT CONE DYSFUNCTION IN ACUTE EXUDATIVE POLYMORPHOUS VITELLIFORM MACULOPATHY. Retina, 2007, 27, 109-113.	1.0	14
175	Founder Effect of a c.828+3A>T Splice Site Mutation in Peripherin 2 (<i>PRPH2</i>) Causing Autosomal Dominant Retinal Dystrophies. JAMA Ophthalmology, 2015, 133, 511.	1.4	14
176	Retinal Sensitivity Using Microperimetry in Age-Related Macular Degeneration in an Amish Population. Ophthalmic Surgery Lasers and Imaging Retina, 2019, 50, e236-e241.	0.4	14
177	[13] Electroretinographic determination of human Rod flash response in vivo. Methods in Enzymology, 2000, 316, 202-223.	0.4	12
178	Macular spatial distribution of preserved autofluorescence in patients with choroideremia. British Journal of Ophthalmology, 2019, 103, 933-937.	2.1	12
179	Application of a Deep Machine Learning Model for Automatic Measurement of EZ Width in SD-OCT Images of RP. Translational Vision Science and Technology, 2020, 9, 15.	1.1	12
180	Five novelRPGR mutations in families with X-linked retinitis pigmentosa. Human Mutation, 2001, 17, 151-151.	1.1	11

#	Article	IF	CITATIONS
181	Rod transduction parameters from the a wave of local receptor populations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1995, 12, 2259.	0.8	10
182	A Randomized Placebo-Controlled Clinical Trial of Docosahexaenoic Acid (DHA) Supplementation for X-linked Retinitis Pigmentosa. Retina, 2005, 25, S52-S54.	1.0	10
183	Surrogate electroretinographic markers for assessing therapeutic efficacy in the retina. Expert Review of Molecular Diagnostics, 2004, 4, 693-703.	1.5	9
184	An early nonsense mutation facilitates the expression of a short isoform of CNGA3 by alternative translation initiation. Experimental Eye Research, 2018, 171, 48-53.	1.2	9
185	Histopathologic Assessment of Optic Nerves and Retina From a Patient With Chronically Implanted Argus II Retinal Prosthesis System. Translational Vision Science and Technology, 2019, 8, 31.	1.1	9
186	Reliability of Semiautomated Kinetic Perimetry (SKP) and Goldmann Kinetic Perimetry in Children and Adults With Retinal Dystrophies. Translational Vision Science and Technology, 2019, 8, 36.	1.1	9
187	Disease Progression in Patients with Autosomal Dominant Retinitis Pigmentosa due to a Mutation in Inosine Monophosphate Dehydrogenase 1 (IMPDH1). Translational Vision Science and Technology, 2020, 9, 14.	1.1	9
188	Rod photoreceptor temporal properties in retinitis pigmentosa. Experimental Eye Research, 2011, 92, 202-208.	1.2	8
189	Identification of a Novel Gene on 10q22.1 Causing Autosomal Dominant Retinitis Pigmentosa (adRP). Advances in Experimental Medicine and Biology, 2016, 854, 193-200.	0.8	8
190	Comprehensive variant spectrum of the <i>CNGA3</i> gene in patients affected by achromatopsia. Human Mutation, 2022, 43, 832-858.	1.1	8
191	Outer Segment Thickness Predicts Visual Field Response to QLT091001 in Patients with <i>RPE65</i> or <i>LRAT</i> Mutations. Translational Vision Science and Technology, 2015, 4, 8.	1.1	7
192	Molecular Findings in Families with an Initial Diagnose of Autosomal Dominant Retinitis Pigmentosa (adRP). Advances in Experimental Medicine and Biology, 2018, 1074, 237-245.	0.8	7
193	Variable expressivity in patients with autosomal recessive retinitis pigmentosa associated with the gene CNGB1. Ophthalmic Genetics, 2021, 42, 15-22.	0.5	7
194	A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP). Translational Vision Science and Technology, 2021, 10, 9.	1.1	7
195	The RUSH2A Study: Dark-Adapted Visual Fields in Patients With Retinal Degeneration Associated With Biallelic Variants in the <i>USH2A</i> Gene. , 2022, 63, 17.		7
196	Longitudinal measures in children receiving ENCAD for hereditary retinal degeneration. Documenta Ophthalmologica, 1991, 77, 185-192.	1.0	6
197	Pattern-reversal Electroretinographic Follow-up of Laser Photocoagulation for Subfoveal Neovascular Lesions in Age-related Macular Degeneration. American Journal of Ophthalmology, 1993, 116, 148-155.	1.7	6
198	The effect of sleep state on electroretinographic (ERG) activity during early human development. Early Human Development, 1999, 55, 51-62.	0.8	6

#	Article	IF	CITATIONS
199	The Effect of Attention on Fixation Stability During Dynamic Fixation Testing in Stargardt Disease. American Journal of Ophthalmology, 2020, 217, 305-316.	1.7	6
200	Longitudinal Changes of Fixation Stability and Location Within 24 Months in Stargardt Disease: ProgStar Report No. 16. American Journal of Ophthalmology, 2022, 233, 78-89.	1.7	5
201	VALIDATION OF A DEEP LEARNING-BASED ALGORITHM FOR SEGMENTATION OF THE ELLIPSOID ZONE ON OPTICAL COHERENCE TOMOGRAPHY IMAGES OF AN USH2A-RELATED RETINAL DEGENERATION CLINICAL TRIAL. Retina, 2022, 42, 1347-1355.	1.0	5
202	Performance of Deep Learning Models in Automatic Measurement of Ellipsoid Zone Area on Baseline Optical Coherence Tomography (OCT) Images From the Rate of Progression of USH2A-Related Retinal Degeneration (RUSH2A) Study. Frontiers in Medicine, 0, 9, .	1.2	5
203	X-Linked Retinitis Pigmentosa: Current Status. , 2001, , 11-22.		4
204	Visual Function and the Essentiality of $\hat{I}\pm$ -Linolenic Acid and Docosahexaenoic Acid in Human Infants. , 1997, , 183-199.		3
205	Abnormal Rod Photoreceptor Function in Retinitis Pigmentosa. , 1995, , 359-370.		3
206	Rod Photoreceptor Temporal Properties in Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, 2012, 723, 495-502.	0.8	2
207	Longitudinal Changes in Scotopic and Mesopic Macular Function as Assessed with Microperimetry in Patients With Stargardt Disease: SMART Study Report No. 2. American Journal of Ophthalmology, 2022, 236, 32-44.	1.7	2
208	Docosahexaenoic Acid Abnormalities in Red Blood Cells of Patients with Retinitis Pigmentosa. , 1995, , 385-393.		2
209	Pediatric Hereditary Macular Degenerations. , 2011, , 245-294.		1
210	Local and Global Visual Function Deficits in Patients with Stargardt Disease. , 2000, , .		1
211	Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. Journal of Clinical Investigation, 2009, 119, 1396-1396.	3.9	1
212	Endpoints for Measuring Efficacy in Clinical Trials for Inherited Retinal Disease. International Ophthalmology Clinics, 2021, 61, 63-78.	0.3	0
213	The Southwest Eye Registry. , 2001, , 339-345.		0
214	Electroretinographic Testing in Infants and Children. , 2011, , 67-84.		0
215	Abnormal Cone Receptor Activity in Patients with Hereditary Degeneration. , 1995, , 349-358.		0