Angelina Sacchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551238/publications.pdf Version: 2024-02-01

ANCELINA SACCHI

#	Article	IF	CITATIONS
1	Enhancement of tumor necrosis factor α antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nature Biotechnology, 2000, 18, 1185-1190.	17.5	403
2	Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Research, 2002, 62, 867-74.	0.9	217
3	Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. Journal of Clinical Investigation, 2002, 110, 475-482.	8.2	206
4	Structure-Activity Relationships of Linear and Cyclic Peptides Containing the NGR Tumor-homing Motif. Journal of Biological Chemistry, 2002, 277, 47891-47897.	3.4	159
5	Synergistic Antitumor Activity of Cisplatin, Paclitaxel, and Gemcitabine with Tumor Vasculature-Targeted Tumor Necrosis Factor-α. Clinical Cancer Research, 2006, 12, 175-182.	7.0	141
6	Coupling Tumor Necrosis Factor-α with αV Integrin Ligands Improves Its Antineoplastic Activity. Cancer Research, 2004, 64, 565-571.	0.9	134
7	Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. Journal of Clinical Investigation, 2002, 110, 475-482.	8.2	111
8	Targeted Delivery of IFNÎ ³ to Tumor Vessels Uncouples Antitumor from Counterregulatory Mechanisms. Cancer Research, 2005, 65, 2906-2913.	0.9	87
9	Critical Role of Flanking Residues in NGR-to-isoDGR Transition and CD13/Integrin Receptor Switching. Journal of Biological Chemistry, 2010, 285, 9114-9123.	3.4	77
10	Isoaspartate-Glycine-Arginine: A New Tumor Vasculature–Targeting Motif. Cancer Research, 2008, 68, 7073-7082.	0.9	71
11	Crucial Role for Interferon Î ³ in the Synergism between Tumor Vasculature-Targeted Tumor Necrosis Factor α (NGR-TNF) and Doxorubicin. Cancer Research, 2004, 64, 7150-7155.	0.9	66
12	Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Molecular Immunology, 2006, 43, 1509-1518.	2.2	49
13	NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. Nano Research, 2016, 9, 1393-1408.	10.4	48
14	Synergistic Damage of Tumor Vessels with Ultra Low-Dose Endothelial-Monocyte Activating Polypeptide-II and Neovasculature-Targeted Tumor Necrosis Factor-α. Cancer Research, 2008, 68, 1154-1161.	0.9	45
15	Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials, 2015, 68, 89-99.	11.4	36
16	IsoDGRâ€Tagged Albumin: A New αvβ3 Selective Carrier for Nanodrug Delivery to Tumors. Small, 2013, 9, 673-678.	10.0	33
17	Critical role of indoleamine 2,3-dioxygenase in tumor resistance to repeated treatments with targeted IFNÂ. Molecular Cancer Therapeutics, 2008, 7, 3859-3866.	4.1	25
18	Chromogranin A Is Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Research, 2016, 76, 1781-1791.	0.9	24

ANGELINA SACCHI

#	Article	IF	CITATIONS
19	Chromogranin A Restricts Drug Penetration and Limits the Ability of NGR-TNF to Enhance Chemotherapeutic Efficacy. Cancer Research, 2011, 71, 5881-5890.	0.9	23
20	Enhancement of Tumor Homing by Chemotherapy‣oaded Nanoparticles. Small, 2018, 14, e1802886.	10.0	23
21	Boosting Interleukinâ€12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGRâ€Tagged Nanogold. Small, 2019, 15, e1903462.	10.0	21
22	Glycine <i>N</i> â€Methylation in NGRâ€Tagged Nanocarriers Prevents Isoaspartate Formation and Integrin Binding without Impairing CD13 Recognition and Tumor Homing. Advanced Functional Materials, 2017, 27, 1701245.	14.9	19
23	Succinimide-Based Conjugates Improve IsoDGR Cyclopeptide Affinity to α _v β ₃ without Promoting Integrin Allosteric Activation. Journal of Medicinal Chemistry, 2018, 61, 7474-7485.	6.4	19
24	Regulation of tumor growth by circulating full-length chromogranin A. Oncotarget, 2016, 7, 72716-72732.	1.8	18
25	Effect of chromogranin Aâ€derived vasostatinâ€1 on laserâ€induced choroidal neovascularization in the mouse. Acta Ophthalmologica, 2015, 93, e218-22.	1.1	16
26	Enhancement of doxorubicin anti-cancer activity by vascular targeting using IsoDGR/cytokine-coated nanogold. Journal of Nanobiotechnology, 2021, 19, 128.	9.1	13
27	Spatiotemporal Regulation of Tumor Angiogenesis by Circulating Chromogranin A Cleavage and Neuropilin-1 Engagement. Cancer Research, 2019, 79, 1925-1937.	0.9	9
28	Biotinylation Sites of Tumor Necrosis Factor-α Determined by Liquid Chromatography–Mass Spectrometry. Analytical Biochemistry, 2001, 298, 181-188.	2.4	8
29	Characterisation of functional biotinylated TNF-α targeted to the membrane of apoptotic melanoma cells. Journal of Immunological Methods, 2003, 276, 79-87.	1.4	6
30	NGR-TNF Engineering with an N-Terminal Serine Reduces Degradation and Post-Translational Modifications and Improves Its Tumor-Targeting Activity. Molecular Pharmaceutics, 2020, 17, 3813-3824.	4.6	6
31	A stapled chromogranin A-derived peptide is a potent dual ligand for integrins αvβ6 and αvβ8. Chemical Communications, 2019, 55, 14777-14780.	4.1	5
32	Nanogold Functionalized With Lipoamide-isoDGR: A Simple, Robust and Versatile Nanosystem for αvβ3-Integrin Targeting. Frontiers in Chemistry, 2021, 9, 690357.	3.6	2