
Nada D Savić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5550904/publications.pdf Version: 2024-02-01

Νασα Ο ςανιät

#	Article	IF	CITATIONS
1	A comparative antimicrobial and toxicological study of gold(<scp>iii</scp>) and silver(<scp>i</scp>) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(<scp>iii</scp>)/Ag(<scp>i</scp>) complexes mixture. RSC Advances, 2016, 6, 13193-13206.	3.6	38
2	Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. European Journal of Medicinal Chemistry, 2018, 156, 760-773.	5.5	36
3	Mononuclear gold(<scp>iii</scp>) complexes with <scp>l</scp> -histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. Dalton Transactions, 2017, 46, 2594-2608.	3.3	22
4	Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. Journal of Inorganic Biochemistry, 2017, 174, 156-168.	3.5	22
5	Silver(<scp>i</scp>) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities. MedChemComm, 2016, 7, 282-291.	3.4	21
6	The nature of the Au–N bond in gold(<scp>iii</scp>) complexes with aromatic nitrogen-containing heterocycles: the influence of Au(<scp>iii</scp>) ions on the ligand aromaticity. New Journal of Chemistry, 2017, 41, 12407-12415.	2.8	17
7	Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection. Journal of Inorganic Biochemistry, 2019, 195, 149-163.	3.5	17
8	Synthesis, structural characterization and biological evaluation of dinuclear gold(<scp>iii</scp>) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity. MedChemComm, 2016, 7, 1356-1366.	3.4	16
9	New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center. Journal of Inorganic Biochemistry, 2020, 203, 110872.	3.5	16
10	Dinuclear silver(<scp>i</scp>) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes. Dalton Transactions, 2020, 49, 10880-10894.	3.3	16
11	Selective Hydrolysis of Transferrin Promoted by Zr-Substituted Polyoxometalates. Molecules, 2020, 25, 3472.	3.8	15
12	Hydrolysis of Peptide Bonds in Protein Micelles Promoted by a Zirconium(IV)‣ubstituted Polyoxometalate as an Artificial Protease. Chemistry - A European Journal, 2020, 26, 11170-11179.	3.3	13
13	Expanding the Scope of Polyoxometalates as Artificial Proteases towards Hydrolysis of Insoluble Proteins. Chemistry - A European Journal, 2022, 28, .	3.3	13
14	Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands. Bioinorganic Chemistry and Applications, 2020, 2020, 1-12.	4.1	12
15	Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I). Journal of Molecular Structure, 2021, 1232, 130006.	3.6	9
16	Broadening the Scope of Polyoxometalates as Artificial Proteases in Surfactant Solutions: Hydrolysis of Ovalbumin by Zr(IV)-Substituted Keggin Complex. Inorganics, 2021, 9, 22.	2.7	7
17	Understanding the Role of Surfactants in the Interaction and Hydrolysis of Myoglobin by Zrâ€MOFâ€808. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	4
18	Modulation of the structure of octahedral 1,3-pdta-nickel(II) complex by introducing methyl substituents at the central 1,3-propanediamine carbon atom: Stereospecific formation and the crystal structure of [Mg(H2O)5Ni(2,2-diMe-1,3-pdta)]·1.5H2O. Polyhedron, 2020, 191, 114812.	2.2	3

#	Article	IF	CITATIONS
19	Synthesis and structural analysis of polynuclear silver(I) complexes with 4,7-phenanthroline. Journal of the Serbian Chemical Society, 2019, 84, 689-699.	0.8	3
20	Front Cover: Understanding the Role of Surfactants in the Interaction and Hydrolysis of Myoglobin by Zrâ€MOFâ€808 (Eur. J. Inorg. Chem. 20/2022). European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	0