Maria H Traka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5550547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterisation of the Introgression of Brassica villosa Genome Into Broccoli to Enhance Methionine-Derived Glucosinolates and Associated Health Benefits. Frontiers in Plant Science, 2022, 13, 855707.	3.6	2
2	CRISPR-Cas9-Mediated Gene Editing of <i>MYB28</i> Genes Impair Glucoraphanin Accumulation of <i>Brassica oleracea</i> in the Field. CRISPR Journal, 2021, 4, 416-426.	2.9	24
3	Maintaining and updating food composition datasets for multiple users and novel technologies: Current challenges from a UK perspective. Nutrition Bulletin, 2020, 45, 230-240.	1.8	21
4	Accumulation of Dietary Sâ€Methyl Cysteine Sulfoxide in Human Prostate Tissue. Molecular Nutrition and Food Research, 2019, 63, e1900461.	3.3	14
5	Plant Bioactives and the Prevention of Prostate Cancer: Evidence from Human Studies. Nutrients, 2019, 11, 2245.	4.1	22
6	Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention—results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. American Journal of Clinical Nutrition, 2019, 109, 1133-1144.	4.7	66
7	Bioavailability of Glucoraphanin and Sulforaphane from Highâ€Glucoraphanin Broccoli. Molecular Nutrition and Food Research, 2018, 62, e1700911.	3.3	57
8	Increased transcriptional and metabolic capacity for lipid metabolism in the peripheral zone of the prostate may underpin its increased susceptibility to cancer. Oncotarget, 2017, 8, 84902-84916.	1.8	14
9	Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Molecular Nutrition and Food Research, 2015, 59, 918-926.	3.3	67
10	Suppression of <scp>LPS</scp> â€induced transcription and cytokine secretion by the dietary isothiocyanate sulforaphane. Molecular Nutrition and Food Research, 2014, 58, 2286-2296.	3.3	28
11	Sulforaphane and prostate cancer interception. Drug Discovery Today, 2014, 19, 1488-1492.	6.4	33
12	Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol. Food Chemistry, 2013, 138, 1172-1182.	8.2	16
13	Antiproliferative Activity of the Dietary Isothiocyanate Erucin, a Bioactive Compound from Cruciferous Vegetables, on Human Prostate Cancer Cells. Nutrition and Cancer, 2013, 65, 132-138.	2.0	40
14	A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. American Journal of Clinical Nutrition, 2013, 98, 712-722.	4.7	60
15	Genetic regulation of glucoraphanin accumulation in Beneforté [®] broccoli. New Phytologist, 2013, 198, 1085-1095.	7.3	111
16	The effect of a high glucoraphanin broccoli diet on cardiovascular risk profile: a randomised controlled study. Proceedings of the Nutrition Society, 2012, 71, .	1.0	0
17	Enhanced in Vitro Biological Activity of Synthetic 2-(2-Pyridyl) Ethyl Isothiocyanate Compared to Natural 4-(Methylsulfinyl) Butyl Isothiocyanate. Journal of Medicinal Chemistry, 2012, 55, 9682-9692. 	6.4	15
18	Plant Science and Human Nutrition: Challenges in Assessing Health-Promoting Properties of Phytochemicals. Plant Cell, 2011, 23, 2483-2497.	6.6	85

Maria H Traka

#	Article	IF	CITATIONS
19	Biological Profile of Erucin: A New Promising Anticancer Agent from Cruciferous Vegetables. Toxins, 2010, 2, 593-612.	3.4	79
20	The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer. Molecular Cancer, 2010, 9, 189.	19.2	46
21	Involvement of KLF4 in Sulforaphane- and Iberin-Mediated Induction of p21waf1/cip1. Nutrition and Cancer, 2009, 61, 137-145.	2.0	23
22	Glucosinolates, isothiocyanates and human health. Phytochemistry Reviews, 2009, 8, 269-282.	6.5	413
23	Gene expression profile of primary prostate epithelial and stromal cells in response to sulforaphane or iberin exposure. Prostate, 2009, 69, 1411-1421.	2.3	30
24	Broccoli Consumption Interacts with GSTM1 to Perturb Oncogenic Signalling Pathways in the Prostate. PLoS ONE, 2008, 3, e2568.	2.5	135
25	Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cellular and Molecular Life Sciences, 2007, 64, 1105-1127.	5.4	619
26	Glucosinolate and Amino Acid Biosynthesis in Arabidopsis. Plant Physiology, 2004, 135, 828-839.	4.8	113