
Shreya Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5550476/publications.pdf Version: 2024-02-01

SHDEVA SADKAD

#	Article	IF	CITATIONS
1	Potential- and Time-Dependent Dynamic Nature of an Oxide-Derived PdIn Nanocatalyst during Electrochemical CO ₂ Reduction. ACS Nano, 2022, 16, 6185-6196.	7.3	29
2	Noble-Metal-Free Heterojunction Photocatalyst for Selective CO ₂ Reduction to Methane upon Induced Strain Relaxation. ACS Catalysis, 2022, 12, 687-697.	5.5	56
3	Catalyst designing strategies for electrochemical CO ₂ reduction: a perspective. Progress in Energy, 2022, 4, 032002.	4.6	5
4	Morphologyâ€Tuned Pt ₃ Ge Accelerates Water Dissociation to Industrialâ€Standard Hydrogen Production over a wide pH Range. Advanced Materials, 2022, 34, .	11.1	12
5	In Situ Mechanistic Insights for the Oxygen Reduction Reaction in Chemically Modulated Ordered Intermetallic Catalyst Promoting Complete Electron Transfer. Journal of the American Chemical Society, 2022, 144, 11859-11869.	6.6	53
6	An overview on Sb-based intermetallics and alloys for sodium-ion batteries: trends, challenges and future prospects from material synthesis to battery performance. Journal of Materials Chemistry A, 2021, 9, 5164-5196.	5.2	38
7	<i>Operando</i> Generated Ordered Heterogeneous Catalyst for the Selective Conversion of CO ₂ to Methanol. ACS Energy Letters, 2021, 6, 509-516.	8.8	41
8	Unveiling the Roles of Lattice Strain and Descriptor Species on Pt-Like Oxygen Reduction Activity in Pd–Bi Catalysts. ACS Catalysis, 2021, 11, 800-808.	5.5	35
9	Conductive interface promoted bifunctional oxygen reduction/evolution activity in an ultra-low precious metal based hybrid catalyst. Chemical Communications, 2021, 57, 1951-1954.	2.2	6
10	An Overview on Pt ₃ X Electrocatalysts for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2021, 16, 1184-1197.	1.7	7
11	Structureâ€Tailored Nonâ€Noble Metalâ€based Ternary Chalcogenide Nanocrystals for Ptâ€ŀike Electrocatalytic Hydrogen Production. ChemSusChem, 2021, 14, 3074-3083.	3.6	5
12	Dealloying Induced Manipulative Disruption of Ni2P–SnP Heterostructure Enabling Enhanced Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2021, 125, 13225-13233.	1.5	6
13	Ultralow non-noble metal loaded MOF derived bi-functional electrocatalysts for the oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2021, 9, 9319-9326.	5.2	26
14	Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF. Nanoscale, 2020, 12, 22718-22734.	2.8	26
15	Operando Sodiation Mechanistic Study of a New Antimony-Based Intermetallic CoSb as a High-Performance Sodium-Ion Battery Anode. Journal of Physical Chemistry C, 2020, 124, 15757-15768.	1.5	11
16	Stress-Induced Electronic Structure Modulation of Manganese-Incorporated Ni ₂ P Leading to Enhanced Activity for Water Splitting. ACS Applied Energy Materials, 2020, 3, 1271-1278.	2.5	24
17	Topochemical Bottom-Up Synthesis of 2D- and 3D-Sodium Iron Fluoride Frameworks. Chemistry of Materials, 2019, 31, 295-299.	3.2	12
18	Anisotropic Near-Zero Thermal Expansion inREAgxGa4–x(RE= La–Nd, Sm, Eu, and Yb) Induced by Structural Reorganization. Inorganic Chemistry, 2018, 57, 12576-12587.	1.9	4

#	Article	IF	CITATIONS
19	An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 2060-2080.	3.0	213
20	Evolution of dealloyed PdBi ₂ nanoparticles as electrocatalysts with enhanced activity and remarkable durability in hydrogen evolution reactions. Journal of Materials Chemistry A, 2017, 5, 15950-15960.	5.2	52