Manuel Sanchez-Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5550474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room-temperature prepared bimetallic nanocrystalline MOF-74 as catalysts in the aerobic oxidation of cyclohexene. Catalysis Today, 2022, 394-396, 295-303.	4.4	10
2	One-pot laccase@MOF biocatalysts efficiently remove bisphenol A from water. Catalysis Today, 2022, 390-391, 265-271.	4.4	20
3	Sustainable synthesis of a new semiamorphous Ti-BDC MOF material and the photocatalytic performance of its ternary composites with Ag3PO4 and g-C3N4. Applied Surface Science, 2022, 578, 151996.	6.1	20
4	Semiamorphous Fe-BDC: The missing link between the highly-demanded iron carboxylate MOF catalysts. Catalysis Today, 2022, 390-391, 237-245.	4.4	3
5	Sustainable synthesis of semicrystalline Zr-BDC MOF and heterostructural Ag3PO4/Zr-BDC/g-C3N4 composite for photocatalytic dye degradation. Catalysis Today, 2022, 390-391, 162-175.	4.4	21
6	Understanding electron transfer processes and oxygen reduction electrocatalysis in nanocrystalline Cu-MOF-74. Journal of Electroanalytical Chemistry, 2022, 918, 116489.	3.8	6
7	On the contribution of Pair Distribution Function (PDF) to the characterization of nanocrystalline MOFs: The case of M-MOF-74. Microporous and Mesoporous Materials, 2021, 319, 110973.	4.4	11
8	Sustainable M-MOF-74 (M = Cu, Co, Zn) prepared in methanol as heterogeneous catalysts in the synthesis of benzaldehyde from styrene oxidation. Journal of Solid State Chemistry, 2021, 298, 122151.	2.9	20
9	Sustainable One-Pot Immobilization of Enzymes in/on Metal-Organic Framework Materials. Catalysts, 2021, 11, 1002.	3.5	18
10	Room temperature synthesis of high-quality Ce(IV)-based MOFs in water. Microporous and Mesoporous Materials, 2021, 324, 111303.	4.4	29
11	Surfactant-induced hierarchically porous MOF-based catalysts prepared under sustainable conditions and their ability to remove Bisphenol A from aqueous solutions. Catalysis Today, 2021, , .	4.4	6
12	Efficient One-Step Immobilization of CaLB Lipase over MOF Support NH2-MIL-53(Al). Catalysts, 2020, 10, 918.	3.5	15
13	Synthesis and Characterization of Aluminophosphates Type-5 and 36 Doubly Modified with Si and Zn and Its Catalytic Application in the Reaction of Methanol to Hydrocarbons (MTH). Topics in Catalysis, 2020, 63, 437-450.	2.8	7
14	Environmentally Friendly Enzyme Immobilization on MOF Materials. Methods in Molecular Biology, 2020, 2100, 271-296.	0.9	7
15	Observation of Ag Nanoparticles in/on Ag@MIL-100(Fe) Prepared Through Different Procedures. Frontiers in Chemistry, 2019, 7, 686.	3.6	14
16	Greener synthesis of Cu-MOF-74 and its catalytic use for the generation of vanillin. Dalton Transactions, 2018, 47, 4639-4645.	3.3	71
17	Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization. Catalysis Today, 2018, 304, 119-126.	4.4	79
18	Sustainable Fe-BTC catalyst for efficient removal of mehylene blue by advanced fenton oxidation. Catalysis Today, 2018, 313, 6-11.	4.4	65

#	Article	IF	CITATIONS
19	Metal-Substituted Microporous Aluminophosphates. Structure and Bonding, 2018, , 251-303.	1.0	3
20	Biocatalysis on Porous Materials. , 2018, , 149-174.		1
21	Rapid Inâ€Situ Immobilization of Enzymes in Metal–Organic Framework Supports under Mild Conditions. ChemCatChem, 2017, 9, 1182-1186.	3.7	62
22	Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Crystal Growth and Design, 2017, 17, 1806-1813.	3.0	251
23	lonothermal preparation of triclinic SAPO-34 and its catalytic performance in the MTO process. Catalysis Today, 2017, 296, 239-246.	4.4	18
24	C _s â€Corrected STEM Imaging of both Pure and Silverâ€Supported Metalâ€Organic Framework MILâ€100(Fe). ChemCatChem, 2017, 9, 3497-3502.	3.7	18
25	<i>In situ</i> and postâ€synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts. Journal of Chemical Technology and Biotechnology, 2017, 92, 2583-2593.	3.2	63
26	Flexibility of the imidazolium based ionic liquids/water system for the synthesis of siliceous 10-ring containing microporous frameworks. Microporous and Mesoporous Materials, 2017, 240, 117-122.	4.4	4
27	A Recyclable Cu-MOF-74 Catalyst for the Ligand-Free O-Arylation Reaction of 4-Nitrobenzaldehyde and Phenol. Nanomaterials, 2017, 7, 149.	4.1	21
28	Operando Raman-mass spectrometry investigation of hydrogen release by thermolysis of ammonia borane confined in mesoporous materials. Microporous and Mesoporous Materials, 2016, 226, 454-465.	4.4	19
29	HKUST-1 as a Heterogeneous Catalyst for the Synthesis of Vanillin. Journal of Visualized Experiments, 2016, , .	0.3	4
30	Influence of Si Incorporation into the Novel Ti(III)APO-5 Catalysts on the Oxidation of Cyclohexene in Liquid Phase. Topics in Catalysis, 2016, 59, 326-336.	2.8	6
31	Atomic Observations of Microporous Materials Highly Unstable under the Electron Beam: The Cases of Tiâ€Đoped AlPO ₄ â€5 and Zn–MOFâ€74. ChemCatChem, 2015, 7, 3719-3724.	3.7	38
32	Nanocrystalline M–MOFâ€74 as Heterogeneous Catalysts in the Oxidation of Cyclohexene: Correlation of the Activity and Redox Potential. ChemCatChem, 2015, 7, 674-681.	3.7	86
33	Catalytic activity of HKUST-1 in the oxidation of trans-ferulic acid to vanillin. New Journal of Chemistry, 2015, 39, 5112-5115.	2.8	74
34	Direct Synthesis, Structural Features, and Enhanced Catalytic Activity of the Basolite F300-like Semiamorphous Fe-BTC Framework. Crystal Growth and Design, 2015, 15, 4498-4506.	3.0	98
35	Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chemistry, 2015, 17, 1500-1509.	9.0	263
36	Incorporation of Ti(III) into the AlPO4-5 framework by direct synthesis. Microporous and Mesoporous Materials, 2014, 190, 334-345.	4.4	9

Manuel Sanchez-Sanchez

#	Article	IF	CITATIONS
37	Synthesis and characterization of a new Cd-based metal-organic framework isostructural with MOF-74/CPO-27 materials. Microporous and Mesoporous Materials, 2014, 190, 248-254.	4.4	53
38	Ti(III)APO-5 materials as selective catalysts for the allylic oxidation of cyclohexene: Effect of Ti source and Ti content. Catalysis Today, 2014, 227, 57-64.	4.4	16
39	Room temperature synthesis of metal organic framework MOF-2. Journal of Porous Materials, 2014, 21, 769-773.	2.6	63
40	Rationally Designed Nitrogen-Rich Metal–Organic Cube Material: An Efficient CO2 Adsorbent and H2 Confiner. Crystal Growth and Design, 2014, 14, 739-746.	3.0	33
41	Nanoscaled M-MOF-74 Materials Prepared at Room Temperature. Crystal Growth and Design, 2014, 14, 2479-2487.	3.0	155
42	Enhanced catalytic activity of TAPO-5 in the oxidation of cyclohexene with hydrogen peroxide under anhydrous conditions. Catalysis Today, 2013, 213, 211-218.	4.4	18
43	Micron-Sized Single-Crystal-like CoAPO-5/Carbon Composites Leading to Hierarchical CoAPO-5 with Both Inter- and Intracrystalline Mesoporosity. Crystal Growth and Design, 2013, 13, 2476-2485.	3.0	6
44	Towards the control of intercrystalline mesoporosity in inorganic microporous materials: The case of CoAPO-5. Catalysis Today, 2012, 179, 102-114.	4.4	10
45	Probing ZnAPO-34 Self-Assembly Using Simultaneous Multiple in Situ Techniques. Journal of Physical Chemistry C, 2011, 115, 6331-6340.	3.1	35
46	Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy. International Journal of Hydrogen Energy, 2011, 36, 10834-10844.	7.1	124
47	Highly Ti-loaded MCM-41: Effect of the metal precursor and loading on the titanium distribution and on the catalytic activity in different oxidation processes. Microporous and Mesoporous Materials, 2010, 132, 112-120.	4.4	27
48	Differences between the isostructural IRMOF-1 and MOCP-L porous adsorbents. Journal of Porous Materials, 2010, 17, 91-97.	2.6	30
49	Hydrogen adsorption over Zeolite-like MOF materials modified by ion exchange. International Journal of Hydrogen Energy, 2010, 35, 9916-9923.	7.1	53
50	Non-templated intercrystalline mesoporosity in heteroatom-doped AlPO4-5 using N-methyldicyclohexylamine as structure-directing agent. Microporous and Mesoporous Materials, 2010, 131, 331-341.	4.4	23
51	Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties. Langmuir, 2010, 26, 5300-5303.	3.5	202
52	Synthesis of Sn–silicalite from hydrothermal conversion of SiO2–SnO2 xerogels. Microporous and Mesoporous Materials, 2009, 119, 176-185.	4.4	36
53	Characterization of zeolite basicity using probe molecules by means of infrared and solid state NMR spectroscopies. Catalysis Today, 2009, 143, 293-301.	4.4	27
54	On the Sn(II) and Sn(IV) incorporation into the AFI-structured AlPO4-based framework: the first significantly acidic SnAPO-5. Journal of Materials Chemistry, 2009, 19, 6833.	6.7	27

#	Article	IF	CITATIONS
55	Changes in the medium-range order during crystallization of aluminosilicate zeolites characterized by high-energy X-ray diffraction technique. Journal of the Ceramic Society of Japan, 2009, 117, 277-282.	1.1	20
56	NMR evidence of different conformations of structure-directing cyclohexylamine in high-doped AlPO4-44 materials. Microporous and Mesoporous Materials, 2008, 114, 485-494.	4.4	11
57	Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite Beta materials and on their catalytic activity for the hydroisomerization of alkanes. Journal of Catalysis, 2008, 254, 12-26.	6.2	60
58	On the Use of CHClF ₂ as a Probe of Basic Sites in Zeolites: The Hostâ 'Guest Interactions Investigated by Multinuclear NMR. Journal of Physical Chemistry C, 2008, 112, 16961-16967.	3.1	9
59	Nearly room-temperature crystallisation of Zn-doped AlPO4-based chabazite materials. Studies in Surface Science and Catalysis, 2007, , 499-505.	1.5	6
60	Effect of Organic Templates on the Kinetics and Crystallization of Microporous Metal-Substituted Aluminophosphates. Journal of Physical Chemistry C, 2007, 111, 16951-16961.	3.1	24
61	Comparing CuAPO-5 with Cu:ZSM-5 in the Selective Catalytic Reduction of NOx:  An in situ Study. Journal of Physical Chemistry C, 2007, 111, 3130-3138.	3.1	12
62	Influence of pH and Si content on Si incorporation in SAPO-5 and their catalytic activity for isomerisation of n-heptane over Pt loaded catalysts. Microporous and Mesoporous Materials, 2007, 99, 288-298.	4.4	64
63	A new approach to the determination of atomic-architecture of amorphous zeolite precursors by high-energy X-ray diffraction technique. Physical Chemistry Chemical Physics, 2006, 8, 224-227.	2.8	88
64	In situ observation of homogeneous nucleation of nanosized zeolite A. Physical Chemistry Chemical Physics, 2006, 8, 1335.	2.8	32
65	Synthesis, characterisation and catalytic studies of ZSM-5 and TS-1 prepared by a new method. Studies in Surface Science and Catalysis, 2004, , 758-762.	1.5	3
66	Nuclear magnetic resonance investigation on the adsorption of pyrrole over alkali-exchanged zeolites X. Studies in Surface Science and Catalysis, 2004, 154, 1769-1776.	1.5	6
67	New structure-directing agents for the specific production of one-dimensional pore mapos. Studies in Surface Science and Catalysis, 2004, 154, 1021-1027.	1.5	8
68	Title is missing!. Catalysis Letters, 2003, 88, 163-167.	2.6	24
69	Investigation on the Nature of the Adsorption Sites of Pyrrole in Alkali-Exchanged Zeolite Y by Nuclear Magnetic Resonance in Combination with Infrared Spectroscopy. Journal of the American Chemical Society, 2002, 124, 3443-3456.	13.7	41
70	Title is missing!. Topics in Catalysis, 2002, 20, 85-88.	2.8	17
71	NMR relaxation of chloroform adsorbed over alkali-exchanged FAU type zeolites. Studies in Surface Science and Catalysis, 2001, , 223-230.	1.5	3
72	Magnetic resonance studies on V-containing, and V,Mg-containing AFI aluminophosphates. Microporous and Mesoporous Materials, 2000, 39, 219-228.	4.4	28

#	Article	IF	CITATIONS
73	Pyrrole as an NMR probe molecule to characterise zeolite basicity. Chemical Communications, 2000, , 491-492.	4.1	46
74	An NMR study on the adsorption and reactivity of chloroform over alkali exchanged zeolites X and Y. Physical Chemistry Chemical Physics, 1999, 1, 4529-4535.	2.8	36